Coherence properties of a spin in a squeezed resonator
- URL: http://arxiv.org/abs/2108.01091v1
- Date: Mon, 2 Aug 2021 18:00:03 GMT
- Title: Coherence properties of a spin in a squeezed resonator
- Authors: Inbar Shani, Emanuele G. Dalla Torre, Michael Stern
- Abstract summary: A promising venue for hybrid quantum computation involves the strong coupling between impurity spins and superconducting resonators.
One strategy to control and enhance this coupling is to prepare the resonator in a non-classical state, such as a squeezed state.
We study the effects of these states on the coherence properties of the spin.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A promising venue for hybrid quantum computation involves the strong coupling
between impurity spins and superconducting resonators. One strategy to control
and enhance this coupling is to prepare the resonator in a non-classical state,
such as a squeezed state. In this work, we theoretically study the effects of
these states on the coherence properties of the spin. We develop an analytic
approach based on the Schrieffer-Wolf transformation that allows us to
quantitatively predict the coupling and the dephasing rate of the spin, and we
numerically confirm its validity. We find that squeezing can enhance the
coupling between the resonator and the spin. However, at the same time, it
amplifies the photon noise and enhances the spin decoherence. Our work
demonstrates a major impediment in using squeezing to reach the strong-coupling
limit.
Related papers
- Caustics in a Near-Resonant Quantum Kicked Rotor [8.098742147831379]
We derive the path integral expression of the quantum evolution and analytically determine the conditions for the caustic formation and recurring period.<n>We also discuss classical-quantum correspondence of the caustics and find that chaos can disrupt the phase matching leading to the destruction of the caustic structure.
arXiv Detail & Related papers (2025-07-21T13:56:53Z) - Quantum channel for modeling spin-motion dephasing in Rydberg chains [44.99833362998488]
We introduce a quantum channel to model the dissipative dynamics resulting from the coupling between spin and motional degrees of freedom in chains of neutral atoms with Rydberg interactions.<n>We benchmark the accuracy of our approach against exact diagonalization for small systems, identifying its regime of validity and the onset of perturbative breakdown.<n>We then apply the quantum channel to compute fidelity loss during transport of single-spin excitations across extended Rydberg chains in intractable regimes via exact diagonalization.
arXiv Detail & Related papers (2025-06-30T17:37:38Z) - Spin squeezing generation in atom-cavity systems: on the effects of adiabatic elimination beyond the leading order [0.0]
Spin-squeezed states are a prototypical example of metrologically useful quantum states where structured entanglement allows for enhanced sensing.<n>Key challenges include the efficient preparation of spin-squeezed states and the scalability of estimation precision with the number $N$ of probes.<n>We show through numerical simulations that the spin-squeezing scalability loss is correctly reproduced by the reduced open system dynamics.
arXiv Detail & Related papers (2025-06-27T16:49:24Z) - Kondo-Zeno crossover in the dynamics of a monitored quantum dot [0.0]
We study the dynamics of a quantum dot coupled to a metallic bath and subject to continuous monitoring of its charge density.
We show that the decay time scale of an initially polarised spin which is suddenly coupled to the bath displays a crossover from Kondo screening, with a lifetime controlled by interactions, to Quantum Zeno effect.
arXiv Detail & Related papers (2024-05-27T16:53:42Z) - Coupling a single spin to high-frequency motion [0.025360731184360698]
High-frequency mechanical resonators open a range of possibilities when coupled to single spins.
New mechanism gives rise to this coupling, which stems from spin-orbit coupling.
Results propel spin-mechanical platforms to an uncharted regime.
arXiv Detail & Related papers (2024-02-29T15:52:53Z) - Unitary and efficient spin squeezing in cavity optomechanics [12.2314512523428]
We propose an approach to produce spin squeezed states of a large number of nitrogen-vacancy centers in diamond nanostructures coupled to an optical cavity.
We found that, under certain conditions, our method has the potential to enhance the spin-spin nonlinear interactions.
Taking into account the noise effects of spin dephasing and relaxtion, we found that the proposed approaches are robust against imperfections.
arXiv Detail & Related papers (2024-01-28T03:19:26Z) - Resolving nonclassical magnon composition of a magnetic ground state via
a qubit [44.99833362998488]
We show that a direct dispersive coupling between a qubit and a noneigenmode magnon enables detecting the magnonic number states' quantum superposition.
This unique coupling is found to enable control over the equilibrium magnon squeezing and a deterministic generation of squeezed even Fock states.
arXiv Detail & Related papers (2023-06-08T09:30:04Z) - Neural-network quantum states for ultra-cold Fermi gases [49.725105678823915]
This work introduces a novel Pfaffian-Jastrow neural-network quantum state that includes backflow transformation based on message-passing architecture.
We observe the emergence of strong pairing correlations through the opposite-spin pair distribution functions.
Our findings suggest that neural-network quantum states provide a promising strategy for studying ultra-cold Fermi gases.
arXiv Detail & Related papers (2023-05-15T17:46:09Z) - Squeezing oscillations in a multimode bosonic Josephson junction [0.4335300149154109]
We show how to enhance the quantum correlations in a one-dimensional multimode bosonic Josephson junction.
Our work provides new ways for engineering correlations and entanglement in the external degree of freedom of interacting many-body systems.
arXiv Detail & Related papers (2023-04-05T23:29:05Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Precession of entangled spin and pseudospin in double quantum dots [0.0]
Quantum dot spin valves are characterized by exchange fields which induce spin precession and generate current spin resonances.
We generalize this setup to allow for arbitrary spin and orbital polarization of the leads.
We observe for both vectors a delicate interplay of decoherence, pumping and precession which can only be understood by considering the dynamics of the spin-pseudospin correlators.
arXiv Detail & Related papers (2022-02-08T23:00:00Z) - Effect of Emitters on Quantum State Transfer in Coupled Cavity Arrays [48.06402199083057]
We study the effects of atoms in cavities which can absorb and emit photons as they propagate down the array.
Our model is equivalent to previously examined spin chains in the one-excitation sector and in the absence of emitters.
arXiv Detail & Related papers (2021-12-10T18:52:07Z) - Chiral control of quantum states in non-Hermitian spin-orbit-coupled
fermions [6.928292647332275]
We implement dissipative spin-orbit-coupled bands filled with ultracold fermions.
We observe parity-time symmetry breaking as a result of the competition between the spin-orbit coupling and dissipation.
This demonstrates that we can explore non-Hermitian topological states with spin-orbit coupling.
arXiv Detail & Related papers (2021-06-09T07:55:17Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
We study the quantum dynamics of paramagnetic defects interacting with a nuclear spin bath at avoided crossings.
The proposed theoretical approach paves the way to designing the coherence properties of spin qubits from first principles.
arXiv Detail & Related papers (2020-10-21T15:37:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.