論文の概要: Metodos de Agrupamentos em dois Estagios
- arxiv url: http://arxiv.org/abs/2108.01123v1
- Date: Mon, 2 Aug 2021 18:49:39 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-04 13:51:25.801038
- Title: Metodos de Agrupamentos em dois Estagios
- Title(参考訳): エスタギオスにおけるアグリパメントの諸相
- Authors: Jefferson Souza, Teresa Ludermir
- Abstract要約: 本研究では,2段階クラスタリング手法について検討する。
SOMK、SOMAK、ASCAK、SoINAKの4つの技術が提案された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This work investigates the use of two-stage clustering methods. Four
techniques were proposed: SOMK, SOMAK, ASCAK and SOINAK. SOMK is composed of a
SOM (Self-Organizing Maps) followed by the K-means algorithm, SOMAK is a
combination of SOM followed by the Ant K-means (AK) algorithm, ASCAK is
composed by the ASCA (Ant System-based Clustering Algorithm) and AK algorithms,
SOINAK is composed by the Self-Organizing Incremental Neural Network (SOINN)
and AK. SOINAK presented a better performance among the four proposed
techniques when applied to pattern recognition problems.
- Abstract(参考訳): 本研究では,二段階クラスタリング手法について検討する。
SOMK、SOMAK、ASCAK、SoINAKの4つの技術が提案された。
SOMKはSOM(Self-Organizing Maps)とK-meansアルゴリズム、SOMAKはSOM、Ant K-means(AK)アルゴリズム、ASCAKはASCA(Ant System-based Clustering Algorithm)、AKアルゴリズム、SOINAKはSOINN(Self-Organizing Incremental Neural Network)で構成されている。
SOINAKはパターン認識問題に適用した場合に提案した4つの手法の中で優れた性能を示した。
関連論文リスト
- Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means 1-step dimensionality reduction clustering method は,クラスタリングタスクにおける次元性の呪いに対処する上で,いくつかの進歩をもたらした。
本稿では,K-meansに多様体学習を統合する統一フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-24T08:59:51Z) - Provably Efficient Information-Directed Sampling Algorithms for Multi-Agent Reinforcement Learning [50.92957910121088]
本研究は,情報指向サンプリング(IDS)の原理に基づくマルチエージェント強化学習(MARL)のための新しいアルゴリズムの設計と解析を行う。
エピソディックな2プレーヤゼロサムMGに対して、ナッシュ平衡を学習するための3つのサンプル効率アルゴリズムを提案する。
我々は、Reg-MAIDSをマルチプレイヤー汎用MGに拡張し、ナッシュ平衡または粗相関平衡をサンプル効率良く学習できることを証明する。
論文 参考訳(メタデータ) (2024-04-30T06:48:56Z) - CKmeans and FCKmeans : Two deterministic initialization procedures for
Kmeans algorithm using a modified crowding distance [0.0]
K平均クラスタリングのための2つの新しい決定論的手順を示す。
CKmeans と FCKmeans という名前の手順は、より混雑した点を初期セントロイドとして使用する。
複数のデータセットに関する実験的研究により、提案手法がクラスタリング精度においてKmeansとKmeans++より優れていることが示された。
論文 参考訳(メタデータ) (2023-04-19T21:46:02Z) - ConvBLS: An Effective and Efficient Incremental Convolutional Broad
Learning System for Image Classification [63.49762079000726]
球状K-means(SKM)アルゴリズムと2段階マルチスケール(TSMS)機能融合に基づく畳み込み広範学習システム(ConvBLS)を提案する。
提案手法は前代未聞の効率的かつ効果的である。
論文 参考訳(メタデータ) (2023-04-01T04:16:12Z) - Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning [146.11600461034746]
教師なしメタラーニングのメソッドであるCACTUsは、擬似ラベル付きクラスタリングベースのアプローチである。
このアプローチはモデルに依存しないため、教師付きアルゴリズムと組み合わせてラベルのないデータから学習することができる。
このことの核となる理由は、埋め込み空間においてクラスタリングに優しい性質が欠如していることである。
論文 参考訳(メタデータ) (2022-09-27T19:04:36Z) - A One-shot Framework for Distributed Clustered Learning in Heterogeneous
Environments [54.172993875654015]
異種環境における分散学習のためのコミュニケーション効率化手法のファミリーを提案する。
ユーザによるローカル計算に基づくワンショットアプローチと、サーバにおけるクラスタリングベースのアグリゲーションステップは、強力な学習保証を提供する。
厳密な凸問題に対しては,ユーザ毎のデータ点数がしきい値を超える限り,提案手法はサンプルサイズの観点から順序最適平均二乗誤差率を達成する。
論文 参考訳(メタデータ) (2022-09-22T09:04:10Z) - ES-Based Jacobian Enables Faster Bilevel Optimization [53.675623215542515]
バイレベル最適化(BO)は多くの現代の機械学習問題を解決する強力なツールとして生まれてきた。
既存の勾配法では、ヤコビアンあるいはヘッセンベクトル計算による二階微分近似が必要となる。
本稿では,進化戦略(ES)に基づく新しいBOアルゴリズムを提案し,BOの過勾配における応答ヤコビ行列を近似する。
論文 参考訳(メタデータ) (2021-10-13T19:36:50Z) - A Multi-disciplinary Ensemble Algorithm for Clustering Heterogeneous
Datasets [0.76146285961466]
本稿では,社会階級ランキングとメタヒューリスティックアルゴリズムに基づく進化的クラスタリングアルゴリズム(ECAStar)を提案する。
ECAStarは、再共生進化演算子、レヴィ飛行最適化、いくつかの統計技術と統合されている。
従来の5つのアプローチに対してECAStarを評価する実験を行った。
論文 参考訳(メタデータ) (2021-01-01T07:20:50Z) - K-Means Kernel Classifier [0.0]
K平均クラスタリングと最小二乗カーネル分類法を組み合わせる。
教師なし学習アルゴリズムと教師なし学習アルゴリズムの組み合わせは,非常にうまく機能することを示す。
論文 参考訳(メタデータ) (2020-12-23T23:10:44Z) - On the Efficiency of K-Means Clustering: Evaluation, Optimization, and
Algorithm Selection [20.900296096958446]
本稿では,高速k平均クラスタリングのためのロイドのアルゴリズムを高速化する既存の手法について,徹底的な評価を行う。
UniK内では、複数のデータセット上での複数のパフォーマンス指標を用いて、既存のメソッドの長所と短所を徹底的に評価する。
我々は、より積極的な刈り取りのために複数の既存手法を効果的にハイブリダイズする、UniK上の最適化アルゴリズムを導出する。
論文 参考訳(メタデータ) (2020-10-13T19:45:30Z) - Improving The Performance Of The K-means Algorithm [2.28438857884398]
私の論文では、クラスタリング結果の質を概ね保ちながら、IKMを高速化する2つのアルゴリズムを提案している。
最初のアルゴリズムはDivisive K-meansと呼ばれ、クラスタの分割プロセスを高速化することでIKMの速度を改善する。
2つ目のアルゴリズムはPar2PK-means(Par2PK-means)と呼ばれ、Two-Phase K-meansモデルを用いてIKMを並列化する。
論文 参考訳(メタデータ) (2020-05-10T15:09:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。