論文の概要: The Role of Phonetic Units in Speech Emotion Recognition
- arxiv url: http://arxiv.org/abs/2108.01132v1
- Date: Mon, 2 Aug 2021 19:19:47 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-04 21:59:42.065139
- Title: The Role of Phonetic Units in Speech Emotion Recognition
- Title(参考訳): 音声感情認識における音素単位の役割
- Authors: Jiahong Yuan, Xingyu Cai, Renjie Zheng, Liang Huang, Kenneth Church
- Abstract要約: 本稿では,Wav2vec 2.0を用いた感情依存音声認識による感情認識手法を提案する。
音素モデル、幅広い音韻クラス、音節のモデルは全て、発話モデルを大幅に上回る。
Wav2vec 2.0は音素よりも粗い音素や大きい音素を認識するように微調整できる。
- 参考スコア(独自算出の注目度): 22.64187265473794
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a method for emotion recognition through emotiondependent speech
recognition using Wav2vec 2.0. Our method achieved a significant improvement
over most previously reported results on IEMOCAP, a benchmark emotion dataset.
Different types of phonetic units are employed and compared in terms of
accuracy and robustness of emotion recognition within and across datasets and
languages. Models of phonemes, broad phonetic classes, and syllables all
significantly outperform the utterance model, demonstrating that phonetic units
are helpful and should be incorporated in speech emotion recognition. The best
performance is from using broad phonetic classes. Further research is needed to
investigate the optimal set of broad phonetic classes for the task of emotion
recognition. Finally, we found that Wav2vec 2.0 can be fine-tuned to recognize
coarser-grained or larger phonetic units than phonemes, such as broad phonetic
classes and syllables.
- Abstract(参考訳): 本稿では,Wav2vec 2.0を用いた感情依存音声認識による感情認識手法を提案する。
提案手法は,ベンチマーク感情データセットであるIEMOCAPにおいて,これまでに報告された結果よりも大幅に改善された。
データセットや言語間の感情認識の正確性と堅牢性の観点から異なるタイプの音声単位が採用され、比較される。
音素モデル,幅広い音韻クラス,音節のモデルは全て発話モデルを大幅に上回り,音声単位が有効であり,音声感情認識に組み込むべきであることを示す。
最高のパフォーマンスは、幅広い音素クラスを使用することです。
感情認識タスクのための幅広い音韻クラスを最適なものにするには、さらなる研究が必要である。
最後に、wav2vec 2.0を微調整することで、音素よりも粗い音素単位や大きな音素単位を認識できることがわかりました。
関連論文リスト
- Speaker Emotion Recognition: Leveraging Self-Supervised Models for Feature Extraction Using Wav2Vec2 and HuBERT [0.0]
本研究では, 自己教師型トランスフォーマーモデルであるWav2Vec2とHuBERTを用いて, 話者の感情を音声から判断する。
提案手法は、RAVDESS、SHEMO、SAVEE、AESDD、Emo-DBを含む計算可能なデータセットに基づいて評価される。
論文 参考訳(メタデータ) (2024-11-05T10:06:40Z) - Character-aware audio-visual subtitling in context [58.95580154761008]
本稿では,テレビ番組における文字認識型音声視覚サブタイピングのための改良されたフレームワークを提案する。
提案手法は,音声認識,話者ダイアリゼーション,文字認識を統合し,音声と視覚の両方を活用する。
提案手法を12テレビ番組のデータセット上で検証し,既存手法と比較して話者ダイアリゼーションと文字認識精度に優れた性能を示す。
論文 参考訳(メタデータ) (2024-10-14T20:27:34Z) - Speech Emotion Recognition Using CNN and Its Use Case in Digital Healthcare [0.0]
人間の感情と感情状態を音声から識別するプロセスは、音声感情認識(SER)として知られている。
私の研究は、畳み込みニューラルネットワーク(CNN)を使って、音声録音と感情を区別し、異なる感情の範囲に応じてラベル付けすることを目指しています。
私は、機械学習手法を用いて、供給された音声ファイルから感情を識別する機械学習モデルを開発した。
論文 参考訳(メタデータ) (2024-06-15T21:33:03Z) - Prompting Audios Using Acoustic Properties For Emotion Representation [36.275219004598874]
感情を表現するために自然言語記述(あるいはプロンプト)の使用を提案する。
我々は、ピッチ、強度、発話速度、調音率などの感情に相関する音響特性を用いて、自動的にプロンプトを生成する。
その結果,様々なPrecision@K測定値において,音響的プロンプトがモデルの性能を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2023-10-03T13:06:58Z) - Describing emotions with acoustic property prompts for speech emotion
recognition [30.990720176317463]
本研究では、ピッチ、ラウドネス、発声率、調音率などの音響特性を演算することで、所定の音声に対する記述を自動生成する手法を提案する。
これらの音声テキストペアを用いてニューラルネットワークモデルをトレーニングし、さらに1つのデータセットを用いてモデルを評価する。
モデルが音声と記述を関連づけることについて検討し,その結果,音声の感情認識と音声検索の性能が向上した。
論文 参考訳(メタデータ) (2022-11-14T20:29:37Z) - Accurate Emotion Strength Assessment for Seen and Unseen Speech Based on
Data-Driven Deep Learning [70.30713251031052]
本研究では,データ駆動型深層学習モデル,すなわちSenseNetを提案する。
実験の結果,提案した強度ネットの予測感情強度は,目視と目視の両方の真理値と高い相関性を示した。
論文 参考訳(メタデータ) (2022-06-15T01:25:32Z) - Textless Speech Emotion Conversion using Decomposed and Discrete
Representations [49.55101900501656]
我々は、音声を、コンテンツ単位、F0、話者、感情からなる離散的、非絡み合いの学習表現に分解する。
まず、内容単位を対象の感情に翻訳し、その単位に基づいて韻律的特徴を予測することによって、音声内容を変更する。
最後に、予測された表現をニューラルボコーダに入力して音声波形を生成する。
論文 参考訳(メタデータ) (2021-11-14T18:16:42Z) - Multimodal Emotion Recognition with High-level Speech and Text Features [8.141157362639182]
本稿では,wav2vec 2.0音声特徴量に対する感情認識を実現するために,新しいクロス表現音声モデルを提案する。
また、Transformerベースのモデルを用いて抽出したテキスト特徴から感情を認識するために、CNNベースのモデルをトレーニングする。
本手法は,4クラス分類問題においてIEMOCAPデータセットを用いて評価する。
論文 参考訳(メタデータ) (2021-09-29T07:08:40Z) - EMOVIE: A Mandarin Emotion Speech Dataset with a Simple Emotional
Text-to-Speech Model [56.75775793011719]
音声ファイルを含む9,724のサンプルとその感情ラベル付きアノテーションを含むマンダリン感情音声データセットを導入,公開する。
入力として追加の参照音声を必要とするこれらのモデルとは異なり、我々のモデルは入力テキストから直接感情ラベルを予測し、感情埋め込みに基づいてより表現力のある音声を生成することができる。
実験段階では、まず感情分類タスクによってデータセットの有効性を検証し、次に提案したデータセットに基づいてモデルをトレーニングし、一連の主観評価を行う。
論文 参考訳(メタデータ) (2021-06-17T08:34:21Z) - Limited Data Emotional Voice Conversion Leveraging Text-to-Speech:
Two-stage Sequence-to-Sequence Training [91.95855310211176]
感情的音声変換は、言語内容と話者のアイデンティティを保ちながら、発話の感情状態を変えることを目的としている。
本研究では,感情音声データ量の少ない連続音声変換のための新しい2段階学習戦略を提案する。
提案フレームワークはスペクトル変換と韻律変換の両方が可能であり、客観的評価と主観評価の両方において最先端のベースラインを大幅に改善する。
論文 参考訳(メタデータ) (2021-03-31T04:56:14Z) - Learning Explicit Prosody Models and Deep Speaker Embeddings for
Atypical Voice Conversion [60.808838088376675]
本稿では,明示的な韻律モデルと深層話者埋め込み学習を用いたVCシステムを提案する。
韻律補正器は音素埋め込みを取り入れ、典型的な音素持続時間とピッチ値を推定する。
変換モデルは、音素埋め込みと典型的な韻律特徴を入力として、変換された音声を生成する。
論文 参考訳(メタデータ) (2020-11-03T13:08:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。