Trapping Effects in Quantum Atomic Arrays
- URL: http://arxiv.org/abs/2108.01153v3
- Date: Tue, 4 Jan 2022 06:31:59 GMT
- Title: Trapping Effects in Quantum Atomic Arrays
- Authors: Pengfei Zhang
- Abstract summary: We develop a microscopic quantum treatment using annihilation and creation operator of atoms in deep optical lattices.
We apply our method to study the trapping effect, which is beyond previous treatment with spin operators.
- Score: 5.623221917573403
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum emitters, particularly atomic arrays with subwavelength lattice
constant, have been proposed to be an ideal platform for studying the interplay
between photons and electric dipoles. In this work, motivated by the recent
experiment [1], we develop a microscopic quantum treatment using annihilation
and creation operator of atoms in deep optical lattices. Using a diagrammatic
approach on the Keldysh contour, we derive the cooperative scattering of the
light and obtain the general formula for the $S$ matrix. We apply our method to
study the trapping effect, which is beyond previous treatment with spin
operators. If the optical lattices are formed by light fields with magical
wavelength, the result matches previous results using spin operators. When
there is a mismatch between the trapping potentials for atoms in the ground
state and the excited state, atomic mirrors become imperfect, with multiple
resonances in the optical response. We further study the effect of recoil for
large but finite trapping frequency. Our results are consistent with existing
experiments.
Related papers
- Polarization vs. magnetic field: competing eigenbases in laser-driven
atoms [0.0]
In the absence of a magnetic field, the atom can get trapped in a dark state, which inhibits fluorescence.
A canonical way to avoid optical pumping to dark states is to apply a magnetic field at an angle with respect to the polarization of the exciting light.
This generates a competition of eigenbases which manifests as a crossover between two regimes dominated either by the laser or the magnetic field.
arXiv Detail & Related papers (2023-10-27T22:52:40Z) - Cavity-induced switching between Bell-state textures in a quantum dot [0.0]
We show how a simple theoretical model of this interplay at resonance predicts complex but measurable effects.
New polariton states emerge that combine spin, relative modes, and radiation.
We uncover novel topological effects involving highly correlated spin and charge density.
arXiv Detail & Related papers (2023-08-17T01:31:36Z) - Doppler-Enhanced Quantum Magnetometry with thermal Rydberg atoms [2.3488056916440856]
We show that one can harness Doppler shifts in a copropagating arrangement to produce an enhanced response to a magnetic field.
Our results pave the way to using quantum effects for magnetometry in readily deployable room-temperature platforms.
arXiv Detail & Related papers (2023-08-09T18:58:20Z) - Single atom in a superoscillatory optical trap [0.0]
We report trapping of single ultracold atom in an optical trap that can be continuously tuned from a standard Airy focus to a subwavelength hotspot smaller than the usual Abbe's diffraction limit.
We argue that superoscillatory trapping and continuous potential tuning offer not only a way to generate compact and tenable ensembles of trapped atoms for quantum simulators but will also be useful in single molecule quantum chemistry.
arXiv Detail & Related papers (2022-11-01T04:54:33Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Collective excitation and decay of waveguide-coupled atoms: from timed
Dicke states to inverted ensembles [0.0]
We study the collective absorption and emission of light by an ensemble of atoms using an optical nanofiber.
We realize strong inversion, with about 80% of the atoms being excited, and study their subsequent radiative decay into the guided modes.
Our results contribute to the fundamental understanding of the collective interaction of light and matter.
arXiv Detail & Related papers (2022-04-08T14:53:46Z) - Effect of Emitters on Quantum State Transfer in Coupled Cavity Arrays [48.06402199083057]
We study the effects of atoms in cavities which can absorb and emit photons as they propagate down the array.
Our model is equivalent to previously examined spin chains in the one-excitation sector and in the absence of emitters.
arXiv Detail & Related papers (2021-12-10T18:52:07Z) - Photon-mediated Stroboscopic Quantum Simulation of a $\mathbb{Z}_{2}$
Lattice Gauge Theory [58.720142291102135]
Quantum simulation of lattice gauge theories (LGTs) aims at tackling non-perturbative particle and condensed matter physics.
One of the current challenges is to go beyond 1+1 dimensions, where four-body (plaquette) interactions, not contained naturally in quantum simulating devices, appear.
We show how to prepare the ground state and measure Wilson loops using state-of-the-art techniques in atomic physics.
arXiv Detail & Related papers (2021-07-27T18:10:08Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Photorefractive effect in LiNbO$_3$-based integrated-optical circuits
for continuous variable experiments [45.82374977939355]
Photorefractive effect might compromise success of on-chip quantum photonics experiments.
We focus on photorefractive effect induced by light at 775 nm, in the context of the generation of non-classical light at 1550 nm telecom wavelength.
arXiv Detail & Related papers (2020-07-22T12:37:45Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.