論文の概要: On the descriptive power of LiDAR intensity images for segment-based
loop closing in 3-D SLAM
- arxiv url: http://arxiv.org/abs/2108.01383v1
- Date: Tue, 3 Aug 2021 09:44:23 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-04 13:55:47.569564
- Title: On the descriptive power of LiDAR intensity images for segment-based
loop closing in 3-D SLAM
- Title(参考訳): 3次元SLAMにおけるセグメントベースループ閉鎖のためのLiDAR強度画像の記述力について
- Authors: Jan Wietrzykowski and Piotr Skrzypczy\'nski
- Abstract要約: セグメントの視覚的コンテキストを考慮した記述子を用いたLiDAR SLAMのセグメントベースグローバルローカライゼーション手法の拡張を提案する。
合成LiDAR強度画像から得られる視覚的コンテキストを学習するディープニューラルネットワークの新しいアーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 7.310043452300736
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose an extension to the segment-based global localization method for
LiDAR SLAM using descriptors learned considering the visual context of the
segments. A new architecture of the deep neural network is presented that
learns the visual context acquired from synthetic LiDAR intensity images. This
approach allows a single multi-beam LiDAR to produce rich and highly
descriptive location signatures. The method is tested on two public datasets,
demonstrating an improved descriptiveness of the new descriptors, and more
reliable loop closure detection in SLAM. Attention analysis of the network is
used to show the importance of focusing on the broader context rather than only
on the 3-D segment.
- Abstract(参考訳): 本稿では,セグメントの視覚的文脈を考慮した記述子を用いたlidar slamのセグメントベースグローバルローカライズ手法の拡張を提案する。
合成LiDAR強度画像から得られる視覚的コンテキストを学習するディープニューラルネットワークの新しいアーキテクチャを提案する。
このアプローチにより、単一のマルチビームLiDARがリッチで記述性の高いロケーションシグネチャを生成することができる。
この手法は2つの公開データセットでテストされ、新しい記述子の記述性の向上とSLAMでのより信頼性の高いループクロージャ検出を示す。
ネットワークの注意分析は,3次元セグメントのみに限らず,より広い文脈に焦点を絞ることの重要性を示す。
関連論文リスト
- Weakly Supervised LiDAR Semantic Segmentation via Scatter Image Annotation [38.715754110667916]
画像アノテーションを用いたLiDARセマンティックセマンティックセマンティックセマンティクスを実装した。
また、パフォーマンスギャップを減らすための3つの重要な戦略を含むネットワークであるScatterNetを提案する。
本手法は,完全教師付き手法の95%以上の性能を達成するために,ラベル付き点の0.02%未満を必要とする。
論文 参考訳(メタデータ) (2024-04-19T13:01:30Z) - DetCLIPv3: Towards Versatile Generative Open-vocabulary Object Detection [111.68263493302499]
DetCLIPv3は、オープンボキャブラリオブジェクト検出と階層ラベルの両方で優れた高性能検出器である。
DetCLIPv3は,1)Versatileモデルアーキテクチャ,2)高情報密度データ,3)効率的なトレーニング戦略の3つのコア設計によって特徴付けられる。
DetCLIPv3は、GLIPv2, GroundingDINO, DetCLIPv2をそれぞれ18.0/19.6/6 APで上回り、優れたオープン語彙検出性能を示す。
論文 参考訳(メタデータ) (2024-04-14T11:01:44Z) - CP-SLAM: Collaborative Neural Point-based SLAM System [54.916578456416204]
本稿では,RGB-D画像シーケンスを用いた協調型暗黙的ニューラルローカライゼーションとマッピング(SLAM)システムを提案する。
これらすべてのモジュールを統一的なフレームワークで実現するために,ニューラルポイントに基づく新しい3次元シーン表現を提案する。
協調的な暗黙的SLAMに対して,一貫性と協調性を改善するために,分散分散型学習戦略を提案する。
論文 参考訳(メタデータ) (2023-11-14T09:17:15Z) - LiDAR-NeRF: Novel LiDAR View Synthesis via Neural Radiance Fields [112.62936571539232]
本稿では,LiDARセンサのための新しいビュー合成手法を提案する。
スタイルトランスファーニューラルネットワークを用いた従来のモデルベースLiDARシミュレータは、新しいビューのレンダリングに応用できる。
ニューラル放射場(NeRF)を用いて幾何学と3D点の属性の連成学習を容易にする。
論文 参考訳(メタデータ) (2023-04-20T15:44:37Z) - Point-SLAM: Dense Neural Point Cloud-based SLAM [61.96492935210654]
本稿では,モノクラーRGBD入力に対する高密度ニューラルネットワークの局所化とマッピング(SLAM)手法を提案する。
トラッキングとマッピングの両方が、同じポイントベースのニューラルシーン表現で実行可能であることを実証する。
論文 参考訳(メタデータ) (2023-04-09T16:48:26Z) - Improving Lidar-Based Semantic Segmentation of Top-View Grid Maps by
Learning Features in Complementary Representations [3.0413873719021995]
我々は、自律運転の文脈において、スパースで単発のLiDAR測定から意味情報を予測するための新しい方法を提案する。
このアプローチは、トップビューグリッドマップのセマンティックセグメンテーションを改善することを目的としている。
各表現に対して、セマンティック情報を効果的に抽出するために、調整されたディープラーニングアーキテクチャが開発された。
論文 参考訳(メタデータ) (2022-03-02T14:49:51Z) - Depth-conditioned Dynamic Message Propagation for Monocular 3D Object
Detection [86.25022248968908]
モノラル3Dオブジェクト検出の問題を解決するために、コンテキストと奥行きを認識する特徴表現を学びます。
KITTIベンチマークデータセットにおける単眼的アプローチにおける最新の結果を示す。
論文 参考訳(メタデータ) (2021-03-30T16:20:24Z) - S3Net: 3D LiDAR Sparse Semantic Segmentation Network [1.330528227599978]
S3NetはLiDARポイントクラウドセマンティックセグメンテーションのための新しい畳み込みニューラルネットワークである。
sparse intra-channel attention module (sintraam)とsparse inter-channel attention module (sinteram)で構成されるエンコーダ-デコーダバックボーンを採用する。
論文 参考訳(メタデータ) (2021-03-15T22:15:24Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDARベースの3Dオブジェクト検出は、自動運転にとって重要なタスクです。
現在のアプローチでは、遠方および閉ざされた物体の偏りと部分的な点雲に苦しむ。
本稿では,この課題を2つの解決法で解決する新しい二段階アプローチ,pc-rgnnを提案する。
論文 参考訳(メタデータ) (2020-12-18T18:06:43Z) - Intensity Scan Context: Coding Intensity and Geometry Relations for Loop
Closure Detection [26.209412893744094]
ループ閉鎖検出は同時局所化とマッピング(SLAM)において不可欠かつ困難な問題である
既存の3次元ループ閉包検出の研究は、しばしば局所的あるいは大域的幾何学的のみの記述子のマッチングを利用する。
我々は,幾何学的特徴と強度特性の両方を探求する,新しいグローバル記述子であるインテンシティ・スキャン・コンテキスト(ISC)を提案する。
論文 参考訳(メタデータ) (2020-03-12T08:11:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。