Learning Nonlinear Waves in Plasmon-induced Transparency
- URL: http://arxiv.org/abs/2108.01508v2
- Date: Wed, 4 Aug 2021 15:31:00 GMT
- Title: Learning Nonlinear Waves in Plasmon-induced Transparency
- Authors: Jiaxi Cheng and Siliu Xu
- Abstract summary: We consider a recurrent neural network (RNN) approach to predict the complex propagation of nonlinear solitons in plasmon-induced transparency metamaterial systems.
We prove the prominent agreement of results in simulation and prediction by long short-term memory (LSTM) artificial neural networks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Plasmon-induced transparency (PIT) displays complex nonlinear dynamics that
find critical phenomena in areas such as nonlinear waves. However, such a
nonlinear solution depends sensitively on the selection of parameters and
different potentials in the Schr\"odinger equation. Despite this complexity,
the machine learning community has developed remarkable efficiencies in
predicting complicated datasets by regression. Here, we consider a recurrent
neural network (RNN) approach to predict the complex propagation of nonlinear
solitons in plasmon-induced transparency metamaterial systems with applied
potentials bypassing the need for analytical and numerical approaches of a
guiding model. We demonstrate the success of this scheme on the prediction of
the propagation of the nonlinear solitons solely from a given initial condition
and potential. We prove the prominent agreement of results in simulation and
prediction by long short-term memory (LSTM) artificial neural networks. The
framework presented in this work opens up a new perspective for the application
of RNN in quantum systems and nonlinear waves using Schr\"odinger-type
equations, for example, the nonlinear dynamics in cold-atom systems and
nonlinear fiber optics.
Related papers
- Data-driven model reconstruction for nonlinear wave dynamics [0.0]
We present an interpretable machine learning framework for analyzing the nonlinear evolution dynamics of optical wavepackets in complex wave media.
We use sparse regression to reduce microscopic discrete lattice models to simpler effective models which can accurately describe the dynamics of the wavepacket envelope.
The reconstructed equations accurately reproduce the linear dispersion nonlinear effects including self-steepening and self-focusing.
arXiv Detail & Related papers (2024-11-18T13:17:10Z) - Nonlinear Schrödinger Network [0.8249694498830558]
Deep neural networks (DNNs) have achieved exceptional performance across various fields by learning complex nonlinear mappings from large-scale datasets.
To address these issues, hybrid approaches that integrate physics with AI are gaining interest.
This paper introduces a novel physics-based AI model called the "Nonlinear Schr"odinger Network"
arXiv Detail & Related papers (2024-07-19T17:58:00Z) - Koopman-based Deep Learning for Nonlinear System Estimation [1.3791394805787949]
We present a novel data-driven linear estimator based on Koopman operator theory to extract meaningful finite-dimensional representations of complex non-linear systems.
Our estimator is also adaptive to a diffeomorphic transformation of the estimated nonlinear system, which enables it to compute optimal state estimates without re-learning.
arXiv Detail & Related papers (2024-05-01T16:49:54Z) - Unconventional Computing based on Four Wave Mixing in Highly Nonlinear
Waveguides [0.0]
We numerically analyze a photonic unconventional accelerator based on the four-wave mixing effect in highly nonlinear waveguides.
By exploiting the rich Kerr-induced nonlinearities, multiple nonlinear transformations of an input signal can be generated and used for solving complex nonlinear tasks.
arXiv Detail & Related papers (2024-02-14T12:34:38Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Exploring Linear Feature Disentanglement For Neural Networks [63.20827189693117]
Non-linear activation functions, e.g., Sigmoid, ReLU, and Tanh, have achieved great success in neural networks (NNs)
Due to the complex non-linear characteristic of samples, the objective of those activation functions is to project samples from their original feature space to a linear separable feature space.
This phenomenon ignites our interest in exploring whether all features need to be transformed by all non-linear functions in current typical NNs.
arXiv Detail & Related papers (2022-03-22T13:09:17Z) - Convolutional Filtering and Neural Networks with Non Commutative
Algebras [153.20329791008095]
We study the generalization of non commutative convolutional neural networks.
We show that non commutative convolutional architectures can be stable to deformations on the space of operators.
arXiv Detail & Related papers (2021-08-23T04:22:58Z) - Designing Kerr Interactions for Quantum Information Processing via
Counterrotating Terms of Asymmetric Josephson-Junction Loops [68.8204255655161]
static cavity nonlinearities typically limit the performance of bosonic quantum error-correcting codes.
Treating the nonlinearity as a perturbation, we derive effective Hamiltonians using the Schrieffer-Wolff transformation.
Results show that a cubic interaction allows to increase the effective rates of both linear and nonlinear operations.
arXiv Detail & Related papers (2021-07-14T15:11:05Z) - Neural Dynamic Mode Decomposition for End-to-End Modeling of Nonlinear
Dynamics [49.41640137945938]
We propose a neural dynamic mode decomposition for estimating a lift function based on neural networks.
With our proposed method, the forecast error is backpropagated through the neural networks and the spectral decomposition.
Our experiments demonstrate the effectiveness of our proposed method in terms of eigenvalue estimation and forecast performance.
arXiv Detail & Related papers (2020-12-11T08:34:26Z) - Coarse-Grained Nonlinear System Identification [0.0]
We introduce Coarse-Grained Dynamics, an efficient and universal parameterization of nonlinear system dynamics based on the Volterra series expansion.
We demonstrate the properties of this approach on a simple synthetic problem.
We also demonstrate this approach experimentally, showing that it identifies an accurate model of the nonlinear voltage to dynamics of a tungsten filament with less than a second of experimental data.
arXiv Detail & Related papers (2020-10-14T06:45:51Z) - Sparse Quantized Spectral Clustering [85.77233010209368]
We exploit tools from random matrix theory to make precise statements about how the eigenspectrum of a matrix changes under such nonlinear transformations.
We show that very little change occurs in the informative eigenstructure even under drastic sparsification/quantization.
arXiv Detail & Related papers (2020-10-03T15:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.