Nonlinear Schrödinger Network
- URL: http://arxiv.org/abs/2407.14504v2
- Date: Wed, 24 Jul 2024 04:33:55 GMT
- Title: Nonlinear Schrödinger Network
- Authors: Yiming Zhou, Callen MacPhee, Tingyi Zhou, Bahram Jalali,
- Abstract summary: Deep neural networks (DNNs) have achieved exceptional performance across various fields by learning complex nonlinear mappings from large-scale datasets.
To address these issues, hybrid approaches that integrate physics with AI are gaining interest.
This paper introduces a novel physics-based AI model called the "Nonlinear Schr"odinger Network"
- Score: 0.8249694498830558
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep neural networks (DNNs) have achieved exceptional performance across various fields by learning complex nonlinear mappings from large-scale datasets. However, they encounter challenges such as high computational costs and limited interpretability. To address these issues, hybrid approaches that integrate physics with AI are gaining interest. This paper introduces a novel physics-based AI model called the "Nonlinear Schr\"odinger Network", which treats the Nonlinear Schr\"odinger Equation (NLSE) as a general-purpose trainable model for learning complex patterns including nonlinear mappings and memory effects from data. Existing physics-informed machine learning methods use neural networks to approximate the solutions of partial differential equations (PDEs). In contrast, our approach directly treats the PDE as a trainable model to obtain general nonlinear mappings that would otherwise require neural networks. As a type of physics-AI symbiosis, it offers a more interpretable and parameter-efficient alternative to traditional black-box neural networks, achieving comparable or better accuracy in some time series classification tasks while significantly reducing the number of required parameters. Notably, the trained Nonlinear Schr\"odinger Network is interpretable, with all parameters having physical meanings as properties of a virtual physical system that transforms the data to a more separable space. This interpretability allows for insight into the underlying dynamics of the data transformation process. Applications to time series forecasting have also been explored. While our current implementation utilizes the NLSE, the proposed method of using physics equations as trainable models to learn nonlinear mappings from data is not limited to the NLSE and may be extended to other master equations of physics.
Related papers
- High-fidelity Multiphysics Modelling for Rapid Predictions Using Physics-informed Parallel Neural Operator [17.85837423448985]
Modelling complex multiphysics systems governed by nonlinear and strongly coupled partial differential equations (PDEs) is a cornerstone in computational science and engineering.
We propose a novel paradigm, physics-informed parallel neural operator (PIPNO), a scalable and unsupervised learning framework.
PIPNO efficiently captures nonlinear operator mappings across diverse physics, including geotechnical engineering, material science, electromagnetism, quantum mechanics, and fluid dynamics.
arXiv Detail & Related papers (2025-02-26T20:29:41Z) - Physics-informed nonlinear vector autoregressive models for the prediction of dynamical systems [0.36248657646376703]
We focus on one class of models called nonlinear vector autoregression (N VAR) to solve ordinary differential equations (ODEs)
Motivated by connections to numerical integration and physics-informed neural networks, we explicitly derive the physics-informed N VAR.
Because N VAR and piN VAR completely share their learned parameters, we propose an augmented procedure to jointly train the two models.
We evaluate the ability of the piN VAR model to predict solutions to various ODE systems, such as the undamped spring, a Lotka-Volterra predator-prey nonlinear model, and the chaotic Lorenz system.
arXiv Detail & Related papers (2024-07-25T14:10:42Z) - Physics-Informed Machine Learning for Seismic Response Prediction OF Nonlinear Steel Moment Resisting Frame Structures [6.483318568088176]
PiML method integrates scientific principles and physical laws into deep neural networks to model seismic responses of nonlinear structures.
Manipulating the equation of motion helps learn system nonlinearities and confines solutions within physically interpretable results.
Result handles complex data better than existing physics-guided LSTM models and outperforms other non-physics data-driven networks.
arXiv Detail & Related papers (2024-02-28T02:16:03Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - Physics-Informed Neural Networks with Hard Linear Equality Constraints [9.101849365688905]
This work proposes a novel physics-informed neural network, KKT-hPINN, which rigorously guarantees hard linear equality constraints.
Experiments on Aspen models of a stirred-tank reactor unit, an extractive distillation subsystem, and a chemical plant demonstrate that this model can further enhance the prediction accuracy.
arXiv Detail & Related papers (2024-02-11T17:40:26Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - SimPINNs: Simulation-Driven Physics-Informed Neural Networks for
Enhanced Performance in Nonlinear Inverse Problems [0.0]
This paper introduces a novel approach to solve inverse problems by leveraging deep learning techniques.
The objective is to infer unknown parameters that govern a physical system based on observed data.
arXiv Detail & Related papers (2023-09-27T06:34:55Z) - Training Deep Surrogate Models with Large Scale Online Learning [48.7576911714538]
Deep learning algorithms have emerged as a viable alternative for obtaining fast solutions for PDEs.
Models are usually trained on synthetic data generated by solvers, stored on disk and read back for training.
It proposes an open source online training framework for deep surrogate models.
arXiv Detail & Related papers (2023-06-28T12:02:27Z) - Physics-aware deep learning framework for linear elasticity [0.0]
The paper presents an efficient and robust data-driven deep learning (DL) computational framework for linear continuum elasticity problems.
For an accurate representation of the field variables, a multi-objective loss function is proposed.
Several benchmark problems including the Airimaty solution to elasticity and the Kirchhoff-Love plate problem are solved.
arXiv Detail & Related papers (2023-02-19T20:33:32Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
Trajectory prediction has been widely pursued in many fields, and many model-based and model-free methods have been explored.
We propose a new method combining both methodologies based on a new Neural Differential Equation model.
Our new model (Neural Social Physics or NSP) is a deep neural network within which we use an explicit physics model with learnable parameters.
arXiv Detail & Related papers (2022-07-21T12:11:18Z) - Physics guided neural networks for modelling of non-linear dynamics [0.0]
This work demonstrates that injection of partially known information at an intermediate layer in a deep neural network can improve model accuracy, reduce model uncertainty, and yield improved convergence during the training.
The value of these physics-guided neural networks has been demonstrated by learning the dynamics of a wide variety of nonlinear dynamical systems represented by five well-known equations in nonlinear systems theory.
arXiv Detail & Related papers (2022-05-13T19:06:36Z) - Neural Galerkin Schemes with Active Learning for High-Dimensional
Evolution Equations [44.89798007370551]
This work proposes Neural Galerkin schemes based on deep learning that generate training data with active learning for numerically solving high-dimensional partial differential equations.
Neural Galerkin schemes build on the Dirac-Frenkel variational principle to train networks by minimizing the residual sequentially over time.
Our finding is that the active form of gathering training data of the proposed Neural Galerkin schemes is key for numerically realizing the expressive power of networks in high dimensions.
arXiv Detail & Related papers (2022-03-02T19:09:52Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
We present a physics-informed framework for solving time-dependent partial differential equations.
Our model utilizes discrete cosine transforms to encode spatial and recurrent neural networks.
We show experimental results on the Taylor-Green vortex solution to the Navier-Stokes equations.
arXiv Detail & Related papers (2022-02-24T20:46:52Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z) - DynNet: Physics-based neural architecture design for linear and
nonlinear structural response modeling and prediction [2.572404739180802]
In this study, a physics-based recurrent neural network model is designed that is able to learn the dynamics of linear and nonlinear multiple degrees of freedom systems.
The model is able to estimate a complete set of responses, including displacement, velocity, acceleration, and internal forces.
arXiv Detail & Related papers (2020-07-03T17:05:35Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - Liquid Time-constant Networks [117.57116214802504]
We introduce a new class of time-continuous recurrent neural network models.
Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems.
These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations.
arXiv Detail & Related papers (2020-06-08T09:53:35Z) - Learning Queuing Networks by Recurrent Neural Networks [0.0]
We propose a machine-learning approach to derive performance models from data.
We exploit a deterministic approximation of their average dynamics in terms of a compact system of ordinary differential equations.
This allows for an interpretable structure of the neural network, which can be trained from system measurements to yield a white-box parameterized model.
arXiv Detail & Related papers (2020-02-25T10:56:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.