論文の概要: Controlled Deep Reinforcement Learning for Optimized Slice Placement
- arxiv url: http://arxiv.org/abs/2108.01544v1
- Date: Tue, 3 Aug 2021 14:54:00 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-04 13:49:32.828710
- Title: Controlled Deep Reinforcement Learning for Optimized Slice Placement
- Title(参考訳): 最適スライス配置のための深部強化学習
- Authors: Jose Jurandir Alves Esteves, Amina Boubendir, Fabrice Guillemin,
Pierre Sens
- Abstract要約: 我々は、"Heuristally Assisted Deep Reinforcement Learning (HA-DRL)"と呼ばれるハイブリッドML-ヒューリスティックアプローチを提案する。
提案手法は,最近のDeep Reinforcement Learning (DRL) によるスライス配置と仮想ネットワーク埋め込み (VNE) に活用されている。
評価結果から,提案したHA-DRLアルゴリズムは,効率的なスライス配置ポリシーの学習を高速化できることが示された。
- 参考スコア(独自算出の注目度): 0.8459686722437155
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a hybrid ML-heuristic approach that we name "Heuristically
Assisted Deep Reinforcement Learning (HA-DRL)" to solve the problem of Network
Slice Placement Optimization. The proposed approach leverages recent works on
Deep Reinforcement Learning (DRL) for slice placement and Virtual Network
Embedding (VNE) and uses a heuristic function to optimize the exploration of
the action space by giving priority to reliable actions indicated by an
efficient heuristic algorithm. The evaluation results show that the proposed
HA-DRL algorithm can accelerate the learning of an efficient slice placement
policy improving slice acceptance ratio when compared with state-of-the-art
approaches that are based only on reinforcement learning.
- Abstract(参考訳): 本稿では,ネットワークスライス配置最適化の課題を解決するために,階層型深層強化学習(HA-DRL)と呼ぶハイブリッドMLヒューリスティックアプローチを提案する。
提案手法は,スライス配置と仮想ネットワーク埋め込み(vne)のための最近の深層強化学習(drl)の成果を活用し,効率的なヒューリスティックアルゴリズムが示す信頼性の高い動作に優先順位を与えることで,行動空間の探索を最適化するヒューリスティック関数を用いる。
評価結果から, HA-DRLアルゴリズムは, 強化学習のみに基づく最先端手法と比較して, スライス受入率を向上させる効率的なスライス配置ポリシーの学習を促進できることが示唆された。
関連論文リスト
- Provably Efficient Iterated CVaR Reinforcement Learning with Function
Approximation and Human Feedback [57.6775169085215]
リスクに敏感な強化学習は、期待される報酬とリスクのバランスをとるポリシーを最適化することを目的としている。
本稿では,線形および一般関数近似の下で,CVaR(Iterated Conditional Value-at-Risk)を目標とする新しいフレームワークを提案する。
本稿では,この反復CVaR RLに対するサンプル効率の高いアルゴリズムを提案し,厳密な理論的解析を行う。
論文 参考訳(メタデータ) (2023-07-06T08:14:54Z) - Provable Reward-Agnostic Preference-Based Reinforcement Learning [61.39541986848391]
PbRL(Preference-based Reinforcement Learning)は、RLエージェントが、軌道上のペアワイドな嗜好に基づくフィードバックを用いてタスクを最適化することを学ぶパラダイムである。
本稿では,隠れた報酬関数の正確な学習を可能にする探索軌道を求める理論的報酬非依存PbRLフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-29T15:00:09Z) - Deep Black-Box Reinforcement Learning with Movement Primitives [15.184283143878488]
深部強化学習のための新しいアルゴリズムを提案する。
これは、政治的に成功したディープRLアルゴリズムである、微分可能な信頼領域層に基づいている。
複雑なロボット制御タスクにおいて,ERLアルゴリズムと最先端のステップベースアルゴリズムを比較した。
論文 参考訳(メタデータ) (2022-10-18T06:34:52Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - On the Robustness of Controlled Deep Reinforcement Learning for Slice
Placement [0.8459686722437155]
我々は、純粋なDRLベースアルゴリズムとハイブリッドDRLヒューリスティックアルゴリズムである2つのDeep Reinforcement Learningアルゴリズムを比較した。
評価結果から,提案手法は純粋なDRLよりも予測不可能なネットワーク負荷変化の場合に,より堅牢で信頼性が高いことが示唆された。
論文 参考訳(メタデータ) (2021-08-05T10:24:33Z) - On Multi-objective Policy Optimization as a Tool for Reinforcement
Learning: Case Studies in Offline RL and Finetuning [24.264618706734012]
より効率的な深層強化学習アルゴリズムの開発方法について述べる。
ケーススタディとして,オフラインRLとファインタニングに注目した。
専門家の混合蒸留(DiME)について紹介する
オフラインのRLでは、DMEが最先端のアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2021-06-15T14:59:14Z) - A Heuristically Assisted Deep Reinforcement Learning Approach for
Network Slice Placement [0.7885276250519428]
本稿では,Deep Reinforcement Learning(DRL)に基づくハイブリッド配置ソリューションと,Power of Two Choices原則に基づく専用最適化を提案する。
提案したHuristically-Assisted DRL (HA-DRL) は,他の最先端手法と比較して学習プロセスの高速化と資源利用の促進を可能にする。
論文 参考訳(メタデータ) (2021-05-14T10:04:17Z) - Learning Sampling Policy for Faster Derivative Free Optimization [100.27518340593284]
ランダムサンプリングではなく,ZO最適化における摂動を生成するためのサンプリングポリシを学習する,新たな強化学習ベースのZOアルゴリズムを提案する。
その結果,ZO-RLアルゴリズムはサンプリングポリシを学習することでZO勾配の分散を効果的に低減し,既存のZOアルゴリズムよりも高速に収束できることが示唆された。
論文 参考訳(メタデータ) (2021-04-09T14:50:59Z) - Progressive extension of reinforcement learning action dimension for
asymmetric assembly tasks [7.4642148614421995]
本稿では,RLアルゴリズムの収束を最適化するために,行動次元の漸進的拡張(PEAD)機構を提案する。
結果は,pead法がrlアルゴリズムのデータ効率と時間効率を向上し,安定した報酬を得ることを示す。
論文 参考訳(メタデータ) (2021-04-06T11:48:54Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent Reflecting Surface (IRS)は、マルチアンテナアクセスポイント(AP)から受信機へのダウンリンク情報伝達を支援する有望な技術である。
我々は、APのアクティブビームフォーミングとIRSのパッシブビームフォーミングを共同最適化することで、APの送信電力を最小化する。
過去の経験からビームフォーミング戦略に適応できる深層強化学習(DRL)手法を提案する。
論文 参考訳(メタデータ) (2020-05-25T01:42:55Z) - Discrete Action On-Policy Learning with Action-Value Critic [72.20609919995086]
離散的な行動空間における強化学習(RL)は、実世界の応用では至るところで行われているが、その複雑さは行動空間次元とともに指数関数的に増大する。
我々は,行動値関数を推定し,相関行動に適用し,これらの評価値を組み合わせて勾配推定の分散を制御する。
これらの取り組みにより、分散制御技術に頼って、関連するRLアルゴリズムを実証的に上回る、新たな離散的なRLアルゴリズムが実現される。
論文 参考訳(メタデータ) (2020-02-10T04:23:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。