Approximating Attributed Incentive Salience In Large Scale Scenarios. A
Representation Learning Approach Based on Artificial Neural Networks
- URL: http://arxiv.org/abs/2108.01724v1
- Date: Tue, 3 Aug 2021 20:03:21 GMT
- Title: Approximating Attributed Incentive Salience In Large Scale Scenarios. A
Representation Learning Approach Based on Artificial Neural Networks
- Authors: Valerio Bonometti, Mathieu J. Ruiz, Anders Drachen, Alex Wade
- Abstract summary: We propose a methodology based on artificial neural networks (ANNs) for approximating latent states produced by incentive salience attribution.
We designed an ANN for estimating duration and intensity of future interactions between individuals and a series of video games in a large-scale longitudinal dataset.
- Score: 5.065947993017158
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Incentive salience attribution can be understood as a psychobiological
process ascribing relevance to potentially rewarding objects and actions.
Despite being an important component of the motivational process guiding our
everyday behaviour its study in naturalistic contexts is not straightforward.
Here we propose a methodology based on artificial neural networks (ANNs) for
approximating latent states produced by this process in situations where large
volumes of behavioural data are available but no strict experimental control is
possible. Leveraging knowledge derived from theoretical and computational
accounts of incentive salience attribution we designed an ANN for estimating
duration and intensity of future interactions between individuals and a series
of video games in a large-scale ($N> 3 \times 10^6$) longitudinal dataset.
Through model comparison and inspection we show that our approach outperforms
competing ones while also generating a representation that well approximate
some of the functions of attributed incentive salience. We discuss our findings
with reference to the adopted theoretical and computational frameworks and
suggest how our methodology could be an initial step for estimating attributed
incentive salience in large scale behavioural studies.
Related papers
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
In pursuit of a deeper understanding of its surprising behaviors, we investigate the utility of a simple yet accurate model of a trained neural network.
Across three case studies, we illustrate how it can be applied to derive new empirical insights on a diverse range of prominent phenomena.
arXiv Detail & Related papers (2024-10-31T22:54:34Z) - BLEND: Behavior-guided Neural Population Dynamics Modeling via Privileged Knowledge Distillation [6.3559178227943764]
We propose BLEND, a behavior-guided neural population dynamics modeling framework via privileged knowledge distillation.
By considering behavior as privileged information, we train a teacher model that takes both behavior observations (privileged features) and neural activities (regular features) as inputs.
A student model is then distilled using only neural activity.
arXiv Detail & Related papers (2024-10-02T12:45:59Z) - Latent Variable Sequence Identification for Cognitive Models with Neural Bayes Estimation [7.7227297059345466]
We present an approach that extends neural Bayes estimation to learn a direct mapping between experimental data and the targeted latent variable space.
Our work underscores that combining recurrent neural networks and simulation-based inference to identify latent variable sequences can enable researchers to access a wider class of cognitive models.
arXiv Detail & Related papers (2024-06-20T21:13:39Z) - A Novel Neural-symbolic System under Statistical Relational Learning [50.747658038910565]
We propose a general bi-level probabilistic graphical reasoning framework called GBPGR.
In GBPGR, the results of symbolic reasoning are utilized to refine and correct the predictions made by the deep learning models.
Our approach achieves high performance and exhibits effective generalization in both transductive and inductive tasks.
arXiv Detail & Related papers (2023-09-16T09:15:37Z) - Decoding Neural Activity to Assess Individual Latent State in
Ecologically Valid Contexts [1.1059590443280727]
We use data from two highly controlled laboratory paradigms to train two separate domain-generalized models.
We derive estimates of the underlying latent state and associated patterns of neural activity.
arXiv Detail & Related papers (2023-04-18T15:15:00Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - Learnability of Competitive Threshold Models [11.005966612053262]
We study the learnability of the competitive threshold model from a theoretical perspective.
We demonstrate how competitive threshold models can be seamlessly simulated by artificial neural networks.
arXiv Detail & Related papers (2022-05-08T01:11:51Z) - Deep Active Learning by Leveraging Training Dynamics [57.95155565319465]
We propose a theory-driven deep active learning method (dynamicAL) which selects samples to maximize training dynamics.
We show that dynamicAL not only outperforms other baselines consistently but also scales well on large deep learning models.
arXiv Detail & Related papers (2021-10-16T16:51:05Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
We present an in-depth analysis of existing deep learning-based methods for modelling social interactions.
We propose two knowledge-based data-driven methods to effectively capture these social interactions.
We develop a large scale interaction-centric benchmark TrajNet++, a significant yet missing component in the field of human trajectory forecasting.
arXiv Detail & Related papers (2020-07-07T17:19:56Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
We introduce a parametrized representation of fixed size, which embeds and then aggregates elements from a given input set according to the optimal transport plan between the set and a trainable reference.
Our approach scales to large datasets and allows end-to-end training of the reference, while also providing a simple unsupervised learning mechanism with small computational cost.
arXiv Detail & Related papers (2020-06-22T08:35:58Z) - Latent Network Structure Learning from High Dimensional Multivariate
Point Processes [5.079425170410857]
We propose a new class of nonstationary Hawkes processes to characterize the complex processes underlying the observed data.
We estimate the latent network structure using an efficient sparse least squares estimation approach.
We demonstrate the efficacy of our proposed method through simulation studies and an application to a neuron spike train data set.
arXiv Detail & Related papers (2020-04-07T17:48:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.