BLEND: Behavior-guided Neural Population Dynamics Modeling via Privileged Knowledge Distillation
- URL: http://arxiv.org/abs/2410.13872v1
- Date: Wed, 02 Oct 2024 12:45:59 GMT
- Title: BLEND: Behavior-guided Neural Population Dynamics Modeling via Privileged Knowledge Distillation
- Authors: Zhengrui Guo, Fangxu Zhou, Wei Wu, Qichen Sun, Lishuang Feng, Jinzhuo Wang, Hao Chen,
- Abstract summary: We propose BLEND, a behavior-guided neural population dynamics modeling framework via privileged knowledge distillation.
By considering behavior as privileged information, we train a teacher model that takes both behavior observations (privileged features) and neural activities (regular features) as inputs.
A student model is then distilled using only neural activity.
- Score: 6.3559178227943764
- License:
- Abstract: Modeling the nonlinear dynamics of neuronal populations represents a key pursuit in computational neuroscience. Recent research has increasingly focused on jointly modeling neural activity and behavior to unravel their interconnections. Despite significant efforts, these approaches often necessitate either intricate model designs or oversimplified assumptions. Given the frequent absence of perfectly paired neural-behavioral datasets in real-world scenarios when deploying these models, a critical yet understudied research question emerges: how to develop a model that performs well using only neural activity as input at inference, while benefiting from the insights gained from behavioral signals during training? To this end, we propose BLEND, the behavior-guided neural population dynamics modeling framework via privileged knowledge distillation. By considering behavior as privileged information, we train a teacher model that takes both behavior observations (privileged features) and neural activities (regular features) as inputs. A student model is then distilled using only neural activity. Unlike existing methods, our framework is model-agnostic and avoids making strong assumptions about the relationship between behavior and neural activity. This allows BLEND to enhance existing neural dynamics modeling architectures without developing specialized models from scratch. Extensive experiments across neural population activity modeling and transcriptomic neuron identity prediction tasks demonstrate strong capabilities of BLEND, reporting over 50% improvement in behavioral decoding and over 15% improvement in transcriptomic neuron identity prediction after behavior-guided distillation. Furthermore, we empirically explore various behavior-guided distillation strategies within the BLEND framework and present a comprehensive analysis of effectiveness and implications for model performance.
Related papers
- Modeling dynamic neural activity by combining naturalistic video stimuli and stimulus-independent latent factors [5.967290675400836]
We propose a probabilistic model that incorporates video inputs along with stimulus-independent latent factors to capture variability in neuronal responses.
After training and testing our model on mouse V1 neuronal responses, we found that it outperforms video-only models in terms of log-likelihood.
We find that the learned latent factors strongly correlate with mouse behavior, although the model was trained without behavior data.
arXiv Detail & Related papers (2024-10-21T16:01:39Z) - Neural Dynamics Model of Visual Decision-Making: Learning from Human Experts [28.340344705437758]
We implement a comprehensive visual decision-making model that spans from visual input to behavioral output.
Our model aligns closely with human behavior and reflects neural activities in primates.
A neuroimaging-informed fine-tuning approach was introduced and applied to the model, leading to performance improvements.
arXiv Detail & Related papers (2024-09-04T02:38:52Z) - Neuroformer: Multimodal and Multitask Generative Pretraining for Brain Data [3.46029409929709]
State-of-the-art systems neuroscience experiments yield large-scale multimodal data, and these data sets require new tools for analysis.
Inspired by the success of large pretrained models in vision and language domains, we reframe the analysis of large-scale, cellular-resolution neuronal spiking data into an autoregressive generation problem.
We first trained Neuroformer on simulated datasets, and found that it both accurately predicted intrinsically simulated neuronal circuit activity, and also inferred the underlying neural circuit connectivity, including direction.
arXiv Detail & Related papers (2023-10-31T20:17:32Z) - STNDT: Modeling Neural Population Activity with a Spatiotemporal
Transformer [19.329190789275565]
We introduce SpatioTemporal Neural Data Transformer (STNDT), an NDT-based architecture that explicitly models responses of individual neurons.
We show that our model achieves state-of-the-art performance on ensemble level in estimating neural activities across four neural datasets.
arXiv Detail & Related papers (2022-06-09T18:54:23Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
A fundamental goal in neuroscience is to understand the relationship between neural activity and behavior.
We generated a new multimodal dataset consisting of the spontaneous behaviors generated by fruit flies.
This dataset and our new set of augmentations promise to accelerate the application of self-supervised learning methods in neuroscience.
arXiv Detail & Related papers (2021-11-29T15:27:51Z) - Dynamic Neural Diversification: Path to Computationally Sustainable
Neural Networks [68.8204255655161]
Small neural networks with a constrained number of trainable parameters, can be suitable resource-efficient candidates for many simple tasks.
We explore the diversity of the neurons within the hidden layer during the learning process.
We analyze how the diversity of the neurons affects predictions of the model.
arXiv Detail & Related papers (2021-09-20T15:12:16Z) - On the Evolution of Neuron Communities in a Deep Learning Architecture [0.7106986689736827]
This paper examines the neuron activation patterns of deep learning-based classification models.
We show that both the community quality (modularity) and entropy are closely related to the deep learning models' performances.
arXiv Detail & Related papers (2021-06-08T21:09:55Z) - Continuous Learning and Adaptation with Membrane Potential and
Activation Threshold Homeostasis [91.3755431537592]
This paper presents the Membrane Potential and Activation Threshold Homeostasis (MPATH) neuron model.
The model allows neurons to maintain a form of dynamic equilibrium by automatically regulating their activity when presented with input.
Experiments demonstrate the model's ability to adapt to and continually learn from its input.
arXiv Detail & Related papers (2021-04-22T04:01:32Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
We propose a novel neural generative model inspired by the theory of predictive processing in the brain.
In a similar way, artificial neurons in our generative model predict what neighboring neurons will do, and adjust their parameters based on how well the predictions matched reality.
arXiv Detail & Related papers (2020-12-07T01:20:38Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
We introduce a novel training strategy that allows learning not only the input-output behavior of an RNN but also its internal network dynamics.
We test the proposed method by training an RNN to simultaneously reproduce internal dynamics and output signals of a physiologically-inspired neural model.
Remarkably, we show that the reproduction of the internal dynamics is successful even when the training algorithm relies on the activities of a small subset of neurons.
arXiv Detail & Related papers (2020-05-05T14:16:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.