論文の概要: Discovering outliers in the Mars Express thermal power consumption
patterns
- arxiv url: http://arxiv.org/abs/2108.02067v1
- Date: Wed, 4 Aug 2021 13:51:29 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-05 13:08:41.996173
- Title: Discovering outliers in the Mars Express thermal power consumption
patterns
- Title(参考訳): マルス・エクスプレス熱消費パターンにおける異常値の発見
- Authors: Matej Petkovi\'c, Luke Lucas, Toma\v{z} Stepi\v{s}nik, Pan\v{c}e
Panov, Nikola Simidjievski, Dragi Kocev
- Abstract要約: マーズ・エクスプレス(MEX)は2004年から火星を周回している。
我々はMEXの熱サブシステムの電力消費パターンを解析した。
- 参考スコア(独自算出の注目度): 3.327474729829121
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The Mars Express (MEX) spacecraft has been orbiting Mars since 2004. The
operators need to constantly monitor its behavior and handle sporadic
deviations (outliers) from the expected patterns of measurements of quantities
that the satellite is sending to Earth. In this paper, we analyze the patterns
of the electrical power consumption of MEX's thermal subsystem, that maintains
the spacecraft's temperature at the desired level. The consumption is not
constant, but should be roughly periodic in the short term, with the period
that corresponds to one orbit around Mars. By using long short-term memory
neural networks, we show that the consumption pattern is more irregular than
expected, and successfully detect such irregularities, opening possibility for
automatic outlier detection on MEX in the future.
- Abstract(参考訳): マーズ・エクスプレス(MEX)は2004年から火星を周回している。
オペレーターはその振る舞いを常に監視し、衛星が地球に送信している量の測定パターンから散発的な偏差(異常値)を扱う必要がある。
本稿では,MEXの熱サブシステムの電力消費パターンを解析し,宇宙船の温度を所望のレベルで維持する。
消費は一定ではないが、短期的には概ね周期的であり、火星の1つの軌道に対応する期間である。
長期記憶ニューラルネットワークを用いて、消費パターンが予想以上に不規則であることを示し、そのような不規則性の検出に成功し、将来のMEXにおける自動異常検出の可能性を開く。
関連論文リスト
- Structure-Invariant Range-Visual-Inertial Odometry [17.47284320862407]
この研究は、火星科学ヘリコプターのミッション用に設計された新しいレンジ・ヴィジュアル・慣性オドメトリーシステムを導入している。
我々のシステムは、一貫した範囲情報を視覚的および慣性計測と融合することにより、最先端のxVIOフレームワークを拡張している。
提案手法は, 厳密なミッション条件を満たす地形相対速度を推定する。
論文 参考訳(メタデータ) (2024-09-06T21:49:10Z) - Machine Learning for Methane Detection and Quantification from Space -- A survey [49.7996292123687]
メタン (CH_4) は強力な温室効果ガスであり、20年間で二酸化炭素 (CO_2) の86倍の温暖化に寄与する。
この研究は、ショートウェーブ赤外線(SWIR)帯域におけるメタン点源検出センサの既存の情報を拡張する。
従来の機械学習(ML)アプローチと同様に、最先端の技術をレビューする。
論文 参考訳(メタデータ) (2024-08-27T15:03:20Z) - Predicting the energetic proton flux with a machine learning regression algorithm [0.0]
最大1時間前に陽子束を予測できる機械学習回帰アルゴリズムを提案する。
このアプローチは、深宇宙と地球近傍の両方の環境における放射線リスクの監視システムを改善するのに役立つかもしれない。
論文 参考訳(メタデータ) (2024-06-18T15:54:50Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
気象学的ダウンスケーリングを任意の散乱ステーションスケールに拡張し、新しいベンチマークとデータセットを確立する。
データ同化技術にインスパイアされた我々は、観測データをダウンスケーリングプロセスに統合し、マルチスケールの観測先行情報を提供する。
提案手法は、複数の曲面変数上で、他の特別に設計されたベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2024-01-22T14:02:56Z) - Expanding Mars Climate Modeling: Interpretable Machine Learning for
Modeling MSL Relative Humidity [0.0]
本稿では,機械学習技術を活用した火星の気候モデリング手法を提案する。
我々の研究は、Gale Craterの相対湿度を正確にモデル化するために設計されたディープニューラルネットワークを提案する。
我々のニューラルネットワークは、いくつかの気象変数を用いて、ガレクレーターの相対湿度を効果的にモデル化できることがわかった。
論文 参考訳(メタデータ) (2023-09-04T08:15:15Z) - Searching for long faint astronomical high energy transients: a data
driven approach [1.5851170136095292]
宇宙起源の高エネルギー検出器のバックグラウンドカウント率を評価するための新しいフレームワークを提案する。
我々は、異なる時間スケールで背景光曲線を推定するためにニューラルネットワーク(NN)を用いる。
我々は,NASAのFermi Gamma-ray Burst Monitor(GBM)のアーカイブデータに基づいて,新しいソフトウェアをテストする。
論文 参考訳(メタデータ) (2023-03-28T12:47:00Z) - Enabling Astronaut Self-Scheduling using a Robust Advanced Modelling and
Scheduling system: an assessment during a Mars analogue mission [44.621922701019336]
アナログ宇宙飛行士の乗組員によるコンピュータ意思決定支援ツールの使用について検討した。
提案されたツールはRomieと呼ばれ、Robost Advanced Modelling and Scheduling (RAMS)システムの新しいカテゴリに属している。
論文 参考訳(メタデータ) (2023-01-14T21:10:05Z) - Domain Knowledge Aids in Signal Disaggregation; the Example of the
Cumulative Water Heater [68.8204255655161]
住宅における累積給湯器(CWH)の電力の検出と分散を目的とした教師なし低周波法を提案する。
本モデルでは,パワースパイクの形状と発生時刻を両立させることにより,教師なし信号の分解の難しさを回避する。
我々のモデルは、単純さに拘わらず、有望なアプリケーションを提供する: オフピーク契約における設定ミスの検出と性能劣化の遅さ。
論文 参考訳(メタデータ) (2022-03-22T10:39:19Z) - Towards Robust Monocular Visual Odometry for Flying Robots on Planetary
Missions [49.79068659889639]
火星に着陸したばかりのIngenuityは、トラバーサビリティの影響を受けない新時代の探検の始まりとなるでしょう。
高速な光フロートラッキングを用いた高能率単分子オードメトリーアルゴリズムを提案する。
また、相対翻訳情報行列の主成分分析に基づいて、スケールドリフトの現在のリスクを推定する新しい手法を提案する。
論文 参考訳(メタデータ) (2021-09-12T12:52:20Z) - DeepClimGAN: A High-Resolution Climate Data Generator [60.59639064716545]
地球系モデル(ESM)は、気候変動シナリオの将来の予測を生成するためにしばしば用いられる。
妥協として、エミュレータはかなり安価であるが、ESMの複雑さを全て備えているわけではない。
本稿では, ESMエミュレータとして, 条件付き生成逆数ネットワーク(GAN)の使用を実証する。
論文 参考訳(メタデータ) (2020-11-23T20:13:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。