Physics-based Noise Modeling for Extreme Low-light Photography
- URL: http://arxiv.org/abs/2108.02158v1
- Date: Wed, 4 Aug 2021 16:36:29 GMT
- Title: Physics-based Noise Modeling for Extreme Low-light Photography
- Authors: Kaixuan Wei, Ying Fu, Yinqiang Zheng and Jiaolong Yang
- Abstract summary: We study the noise statistics in the imaging pipeline of CMOS photosensors.
We formulate a comprehensive noise model that can accurately characterize the real noise structures.
Our noise model can be used to synthesize realistic training data for learning-based low-light denoising algorithms.
- Score: 63.65570751728917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Enhancing the visibility in extreme low-light environments is a challenging
task. Under nearly lightless condition, existing image denoising methods could
easily break down due to significantly low SNR. In this paper, we
systematically study the noise statistics in the imaging pipeline of CMOS
photosensors, and formulate a comprehensive noise model that can accurately
characterize the real noise structures. Our novel model considers the noise
sources caused by digital camera electronics which are largely overlooked by
existing methods yet have significant influence on raw measurement in the dark.
It provides a way to decouple the intricate noise structure into different
statistical distributions with physical interpretations. Moreover, our noise
model can be used to synthesize realistic training data for learning-based
low-light denoising algorithms. In this regard, although promising results have
been shown recently with deep convolutional neural networks, the success
heavily depends on abundant noisy clean image pairs for training, which are
tremendously difficult to obtain in practice. Generalizing their trained models
to images from new devices is also problematic. Extensive experiments on
multiple low-light denoising datasets -- including a newly collected one in
this work covering various devices -- show that a deep neural network trained
with our proposed noise formation model can reach surprisingly-high accuracy.
The results are on par with or sometimes even outperform training with paired
real data, opening a new door to real-world extreme low-light photography.
Related papers
- Towards General Low-Light Raw Noise Synthesis and Modeling [37.87312467017369]
We introduce a new perspective to synthesize the signal-independent noise by a generative model.
Specifically, we synthesize the signal-dependent and signal-independent noise in a physics- and learning-based manner.
In this way, our method can be considered as a general model, that is, it can simultaneously learn different noise characteristics for different ISO levels.
arXiv Detail & Related papers (2023-07-31T09:10:10Z) - Realistic Noise Synthesis with Diffusion Models [68.48859665320828]
Deep image denoising models often rely on large amount of training data for the high quality performance.
We propose a novel method that synthesizes realistic noise using diffusion models, namely Realistic Noise Synthesize Diffusor (RNSD)
RNSD can incorporate guided multiscale content, such as more realistic noise with spatial correlations can be generated at multiple frequencies.
arXiv Detail & Related papers (2023-05-23T12:56:01Z) - Robust Deep Ensemble Method for Real-world Image Denoising [62.099271330458066]
We propose a simple yet effective Bayesian deep ensemble (BDE) method for real-world image denoising.
Our BDE achieves +0.28dB PSNR gain over the state-of-the-art denoising method.
Our BDE can be extended to other image restoration tasks, and achieves +0.30dB, +0.18dB and +0.12dB PSNR gains on benchmark datasets.
arXiv Detail & Related papers (2022-06-08T06:19:30Z) - Noise2NoiseFlow: Realistic Camera Noise Modeling without Clean Images [35.29066692454865]
This paper proposes a framework for training a noise model and a denoiser simultaneously.
It relies on pairs of noisy images rather than noisy/clean paired image data.
The trained denoiser is shown to significantly improve upon both supervised and weakly supervised baseline denoising approaches.
arXiv Detail & Related papers (2022-06-02T15:31:40Z) - Estimating Fine-Grained Noise Model via Contrastive Learning [11.626812663592416]
We propose an innovative noise model estimation and noise synthesis pipeline for realistic noisy image generation.
Our model learns a noise estimation model with fine-grained statistical noise model in a contrastive manner.
By calibrating noise models of several sensors, our model can be extended to predict other cameras.
arXiv Detail & Related papers (2022-04-03T02:35:01Z) - Practical Blind Image Denoising via Swin-Conv-UNet and Data Synthesis [148.16279746287452]
We propose a swin-conv block to incorporate the local modeling ability of residual convolutional layer and non-local modeling ability of swin transformer block.
For the training data synthesis, we design a practical noise degradation model which takes into consideration different kinds of noise.
Experiments on AGWN removal and real image denoising demonstrate that the new network architecture design achieves state-of-the-art performance.
arXiv Detail & Related papers (2022-03-24T18:11:31Z) - Rethinking Noise Synthesis and Modeling in Raw Denoising [75.55136662685341]
We introduce a new perspective to synthesize noise by directly sampling from the sensor's real noise.
It inherently generates accurate raw image noise for different camera sensors.
arXiv Detail & Related papers (2021-10-10T10:45:24Z) - A Physics-based Noise Formation Model for Extreme Low-light Raw
Denoising [34.98772175073111]
We present a highly accurate noise formation model based on the characteristics of CMOS photosensors.
We also propose a method to calibrate the noise parameters for available modern digital cameras.
arXiv Detail & Related papers (2020-03-28T09:16:48Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
Blind image denoising is an important yet very challenging problem in computer vision.
We propose a new variational inference method, which integrates both noise estimation and image denoising.
arXiv Detail & Related papers (2019-08-29T15:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.