Online Model-Free Reinforcement Learning for the Automatic Control of a
Flexible Wing Aircraft
- URL: http://arxiv.org/abs/2108.02393v1
- Date: Thu, 5 Aug 2021 06:10:37 GMT
- Title: Online Model-Free Reinforcement Learning for the Automatic Control of a
Flexible Wing Aircraft
- Authors: Mohammed Abouheaf and Wail Gueaieb and Frank Lewis
- Abstract summary: The control problem of the flexible wing aircraft is challenging due to the prevailing and high nonlinear deformations.
An online control mechanism based on a value reinforcement learning process is developed for flexible wing aerial structures.
It employs a model-free control policy framework and a guaranteed convergent adaptive learning architecture to solve the system's Bellman optimality equation.
- Score: 2.3204178451683264
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The control problem of the flexible wing aircraft is challenging due to the
prevailing and high nonlinear deformations in the flexible wing system. This
urged for new control mechanisms that are robust to the real-time variations in
the wing's aerodynamics. An online control mechanism based on a value iteration
reinforcement learning process is developed for flexible wing aerial
structures. It employs a model-free control policy framework and a guaranteed
convergent adaptive learning architecture to solve the system's Bellman
optimality equation. A Riccati equation is derived and shown to be equivalent
to solving the underlying Bellman equation. The online reinforcement learning
solution is implemented using means of an adaptive-critic mechanism. The
controller is proven to be asymptotically stable in the Lyapunov sense. It is
assessed through computer simulations and its superior performance is
demonstrated on two scenarios under different operating conditions.
Related papers
- Learning Exactly Linearizable Deep Dynamics Models [0.07366405857677226]
We propose a learning method for exactly linearizable dynamical models that can easily apply various control theories to ensure stability, reliability, etc.
The proposed model is employed for the real-time control of an automotive engine, and the results demonstrate good predictive performance and stable control under constraints.
arXiv Detail & Related papers (2023-11-30T05:40:55Z) - An Adaptive Fuzzy Reinforcement Learning Cooperative Approach for the
Autonomous Control of Flock Systems [4.961066282705832]
This work introduces an adaptive distributed robustness technique for the autonomous control of flock systems.
Its relatively flexible structure is based on online fuzzy reinforcement learning schemes which simultaneously target a number of objectives.
In addition to its resilience in the face of dynamic disturbances, the algorithm does not require more than the agent position as a feedback signal.
arXiv Detail & Related papers (2023-03-17T13:07:35Z) - Active Learning of Discrete-Time Dynamics for Uncertainty-Aware Model Predictive Control [46.81433026280051]
We present a self-supervised learning approach that actively models the dynamics of nonlinear robotic systems.
Our approach showcases high resilience and generalization capabilities by consistently adapting to unseen flight conditions.
arXiv Detail & Related papers (2022-10-23T00:45:05Z) - A stabilizing reinforcement learning approach for sampled systems with
partially unknown models [0.0]
We suggest a method to guarantee practical stability of the system-controller closed loop in a purely online learning setting.
To achieve the claimed results, we employ techniques of classical adaptive control.
The method is tested in adaptive traction control and cruise control where it proved to significantly reduce the cost.
arXiv Detail & Related papers (2022-08-31T09:20:14Z) - Sparsity in Partially Controllable Linear Systems [56.142264865866636]
We study partially controllable linear dynamical systems specified by an underlying sparsity pattern.
Our results characterize those state variables which are irrelevant for optimal control.
arXiv Detail & Related papers (2021-10-12T16:41:47Z) - Trajectory Tracking of Underactuated Sea Vessels With Uncertain
Dynamics: An Integral Reinforcement Learning Approach [2.064612766965483]
An online machine learning mechanism based on integral reinforcement learning is proposed to find a solution for a class of nonlinear tracking problems.
The solution is implemented using an online value iteration process which is realized by employing means of the adaptive critics and gradient descent approaches.
arXiv Detail & Related papers (2021-04-01T01:41:49Z) - Imposing Robust Structured Control Constraint on Reinforcement Learning
of Linear Quadratic Regulator [0.0]
This paper presents a design for any generic structure, paving the way for distributed learning control.
The ideas from reinforcement learning (RL) in conjunction with control-theoretic sufficient stability and performance guarantees are used to develop the methodology.
We validate our theoretical results with a simulation on a multi-agent network with 6 agents.
arXiv Detail & Related papers (2020-11-12T00:31:39Z) - Learning a Contact-Adaptive Controller for Robust, Efficient Legged
Locomotion [95.1825179206694]
We present a framework that synthesizes robust controllers for a quadruped robot.
A high-level controller learns to choose from a set of primitives in response to changes in the environment.
A low-level controller that utilizes an established control method to robustly execute the primitives.
arXiv Detail & Related papers (2020-09-21T16:49:26Z) - Logarithmic Regret Bound in Partially Observable Linear Dynamical
Systems [91.43582419264763]
We study the problem of system identification and adaptive control in partially observable linear dynamical systems.
We present the first model estimation method with finite-time guarantees in both open and closed-loop system identification.
We show that AdaptOn is the first algorithm that achieves $textpolylogleft(Tright)$ regret in adaptive control of unknown partially observable linear dynamical systems.
arXiv Detail & Related papers (2020-03-25T06:00:33Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
We propose LqgOpt, a novel reinforcement learning algorithm based on the principle of optimism in the face of uncertainty.
LqgOpt efficiently explores the system dynamics, estimates the model parameters up to their confidence interval, and deploys the controller of the most optimistic model.
arXiv Detail & Related papers (2020-03-12T19:56:38Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.