An Adaptive Fuzzy Reinforcement Learning Cooperative Approach for the
Autonomous Control of Flock Systems
- URL: http://arxiv.org/abs/2303.09946v1
- Date: Fri, 17 Mar 2023 13:07:35 GMT
- Title: An Adaptive Fuzzy Reinforcement Learning Cooperative Approach for the
Autonomous Control of Flock Systems
- Authors: Shuzheng Qu, Mohammed Abouheaf, Wail Gueaieb, and Davide Spinello
- Abstract summary: This work introduces an adaptive distributed robustness technique for the autonomous control of flock systems.
Its relatively flexible structure is based on online fuzzy reinforcement learning schemes which simultaneously target a number of objectives.
In addition to its resilience in the face of dynamic disturbances, the algorithm does not require more than the agent position as a feedback signal.
- Score: 4.961066282705832
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The flock-guidance problem enjoys a challenging structure where multiple
optimization objectives are solved simultaneously. This usually necessitates
different control approaches to tackle various objectives, such as guidance,
collision avoidance, and cohesion. The guidance schemes, in particular, have
long suffered from complex tracking-error dynamics. Furthermore, techniques
that are based on linear feedback strategies obtained at equilibrium conditions
either may not hold or degrade when applied to uncertain dynamic environments.
Pre-tuned fuzzy inference architectures lack robustness under such unmodeled
conditions. This work introduces an adaptive distributed technique for the
autonomous control of flock systems. Its relatively flexible structure is based
on online fuzzy reinforcement learning schemes which simultaneously target a
number of objectives; namely, following a leader, avoiding collision, and
reaching a flock velocity consensus. In addition to its resilience in the face
of dynamic disturbances, the algorithm does not require more than the agent
position as a feedback signal. The effectiveness of the proposed method is
validated with two simulation scenarios and benchmarked against a similar
technique from the literature.
Related papers
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
This work proposes a novel method for estimating both drift and diffusion coefficients of continuous, multidimensional, nonlinear controlled differential equations with non-uniform diffusion.
We provide strong theoretical guarantees, including finite-sample bounds for (L2), (Linfty), and risk metrics, with learning rates adaptive to coefficients' regularity.
Our method is available as an open-source Python library.
arXiv Detail & Related papers (2024-11-04T11:09:58Z) - Integrating DeepRL with Robust Low-Level Control in Robotic Manipulators for Non-Repetitive Reaching Tasks [0.24578723416255746]
In robotics, contemporary strategies are learning-based, characterized by a complex black-box nature and a lack of interpretability.
We propose integrating a collision-free trajectory planner based on deep reinforcement learning (DRL) with a novel auto-tuning low-level control strategy.
arXiv Detail & Related papers (2024-02-04T15:54:03Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
We introduce SAFE-SIM, a controllable closed-loop safety-critical simulation framework.
Our approach yields two distinct advantages: 1) generating realistic long-tail safety-critical scenarios that closely reflect real-world conditions, and 2) providing controllable adversarial behavior for more comprehensive and interactive evaluations.
We validate our framework empirically using the nuScenes and nuPlan datasets across multiple planners, demonstrating improvements in both realism and controllability.
arXiv Detail & Related papers (2023-12-31T04:14:43Z) - Online Nonstochastic Model-Free Reinforcement Learning [35.377261344335736]
We investigate robust model robustness guarantees for environments that may be dynamic or adversarial.
We provide efficient and efficient algorithms for optimizing these policies.
These are the best-known developments in having no dependence on the state-space dimension in having no dependence on the state-space.
arXiv Detail & Related papers (2023-05-27T19:02:55Z) - A Policy Iteration Approach for Flock Motion Control [5.419608513284392]
The overall control process guides the agents while monitoring the flock-cohesiveness and localization.
An online model-free policy iteration mechanism is developed here to guide a flock of agents to follow an independent command generator.
The simulation results of the policy iteration mechanism revealed fast learning and convergence behaviors with less computational effort.
arXiv Detail & Related papers (2023-03-17T15:04:57Z) - Guaranteed Conservation of Momentum for Learning Particle-based Fluid
Dynamics [96.9177297872723]
We present a novel method for guaranteeing linear momentum in learned physics simulations.
We enforce conservation of momentum with a hard constraint, which we realize via antisymmetrical continuous convolutional layers.
In combination, the proposed method allows us to increase the physical accuracy of the learned simulator substantially.
arXiv Detail & Related papers (2022-10-12T09:12:59Z) - Learning Robust Policy against Disturbance in Transition Dynamics via
State-Conservative Policy Optimization [63.75188254377202]
Deep reinforcement learning algorithms can perform poorly in real-world tasks due to discrepancy between source and target environments.
We propose a novel model-free actor-critic algorithm to learn robust policies without modeling the disturbance in advance.
Experiments in several robot control tasks demonstrate that SCPO learns robust policies against the disturbance in transition dynamics.
arXiv Detail & Related papers (2021-12-20T13:13:05Z) - Adaptive Robust Model Predictive Control with Matched and Unmatched
Uncertainty [28.10549712956161]
We propose a learning-based robust predictive control algorithm that can handle large uncertainty in the dynamics for a class of discrete-time systems.
Motivated by an inability of existing learning-based predictive control algorithms to achieve safety guarantees in the presence of uncertainties of large magnitude, we achieve significant performance improvements.
arXiv Detail & Related papers (2021-04-16T17:47:02Z) - Trajectory Tracking of Underactuated Sea Vessels With Uncertain
Dynamics: An Integral Reinforcement Learning Approach [2.064612766965483]
An online machine learning mechanism based on integral reinforcement learning is proposed to find a solution for a class of nonlinear tracking problems.
The solution is implemented using an online value iteration process which is realized by employing means of the adaptive critics and gradient descent approaches.
arXiv Detail & Related papers (2021-04-01T01:41:49Z) - Enforcing robust control guarantees within neural network policies [76.00287474159973]
We propose a generic nonlinear control policy class, parameterized by neural networks, that enforces the same provable robustness criteria as robust control.
We demonstrate the power of this approach on several domains, improving in average-case performance over existing robust control methods and in worst-case stability over (non-robust) deep RL methods.
arXiv Detail & Related papers (2020-11-16T17:14:59Z) - Dynamic Federated Learning [57.14673504239551]
Federated learning has emerged as an umbrella term for centralized coordination strategies in multi-agent environments.
We consider a federated learning model where at every iteration, a random subset of available agents perform local updates based on their data.
Under a non-stationary random walk model on the true minimizer for the aggregate optimization problem, we establish that the performance of the architecture is determined by three factors, namely, the data variability at each agent, the model variability across all agents, and a tracking term that is inversely proportional to the learning rate of the algorithm.
arXiv Detail & Related papers (2020-02-20T15:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.