Unifying Global-Local Representations in Salient Object Detection with Transformer
- URL: http://arxiv.org/abs/2108.02759v2
- Date: Sun, 17 Mar 2024 14:46:31 GMT
- Title: Unifying Global-Local Representations in Salient Object Detection with Transformer
- Authors: Sucheng Ren, Qiang Wen, Nanxuan Zhao, Guoqiang Han, Shengfeng He,
- Abstract summary: We introduce a new attention-based encoder, vision transformer, into salient object detection.
With the global view in very shallow layers, the transformer encoder preserves more local representations.
Our method significantly outperforms other FCN-based and transformer-based methods in five benchmarks.
- Score: 55.23033277636774
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The fully convolutional network (FCN) has dominated salient object detection for a long period. However, the locality of CNN requires the model deep enough to have a global receptive field and such a deep model always leads to the loss of local details. In this paper, we introduce a new attention-based encoder, vision transformer, into salient object detection to ensure the globalization of the representations from shallow to deep layers. With the global view in very shallow layers, the transformer encoder preserves more local representations to recover the spatial details in final saliency maps. Besides, as each layer can capture a global view of its previous layer, adjacent layers can implicitly maximize the representation differences and minimize the redundant features, making that every output feature of transformer layers contributes uniquely for final prediction. To decode features from the transformer, we propose a simple yet effective deeply-transformed decoder. The decoder densely decodes and upsamples the transformer features, generating the final saliency map with less noise injection. Experimental results demonstrate that our method significantly outperforms other FCN-based and transformer-based methods in five benchmarks by a large margin, with an average of 12.17% improvement in terms of Mean Absolute Error (MAE). Code will be available at https://github.com/OliverRensu/GLSTR.
Related papers
- ELGC-Net: Efficient Local-Global Context Aggregation for Remote Sensing Change Detection [65.59969454655996]
We propose an efficient change detection framework, ELGC-Net, which leverages rich contextual information to precisely estimate change regions.
Our proposed ELGC-Net sets a new state-of-the-art performance in remote sensing change detection benchmarks.
We also introduce ELGC-Net-LW, a lighter variant with significantly reduced computational complexity, suitable for resource-constrained settings.
arXiv Detail & Related papers (2024-03-26T17:46:25Z) - LGFCTR: Local and Global Feature Convolutional Transformer for Image
Matching [8.503217766507584]
A novel convolutional transformer is proposed to capture both local contexts and global structures.
A universal FPN-like framework captures global structures in self-encoder as well as cross-decoder by transformers.
A novel regression-based sub-pixel refinement module exploits the whole fine-grained window features for fine-level positional deviation regression.
arXiv Detail & Related papers (2023-11-29T12:06:19Z) - CompletionFormer: Depth Completion with Convolutions and Vision
Transformers [0.0]
This paper proposes a Joint Convolutional Attention and Transformer block (JCAT), which deeply couples the convolutional attention layer and Vision Transformer into one block, as the basic unit to construct our depth completion model in a pyramidal structure.
Our CompletionFormer outperforms state-of-the-art CNNs-based methods on the outdoor KITTI Depth Completion benchmark and indoor NYUv2 dataset, achieving significantly higher efficiency (nearly 1/3 FLOPs) compared to pure Transformer-based methods.
arXiv Detail & Related papers (2023-04-25T17:59:47Z) - Feature Shrinkage Pyramid for Camouflaged Object Detection with
Transformers [34.42710399235461]
Vision transformers have recently shown strong global context modeling capabilities in camouflaged object detection.
They suffer from two major limitations: less effective locality modeling and insufficient feature aggregation in decoders.
We propose a novel transformer-based Feature Shrinkage Pyramid Network (FSPNet), which aims to hierarchically decode locality-enhanced neighboring transformer features.
arXiv Detail & Related papers (2023-03-26T20:50:58Z) - EDTER: Edge Detection with Transformer [71.83960813880843]
We propose a novel transformer-based edge detector, emphEdge Detection TransformER (EDTER), to extract clear and crisp object boundaries and meaningful edges.
EDTER exploits the full image context information and detailed local cues simultaneously.
Experiments on BSDS500, NYUDv2, and Multicue demonstrate the superiority of EDTER in comparison with state-of-the-arts.
arXiv Detail & Related papers (2022-03-16T11:55:55Z) - CCTrans: Simplifying and Improving Crowd Counting with Transformer [7.597392692171026]
We propose a simple approach called CCTrans to simplify the design pipeline.
Specifically, we utilize a pyramid vision transformer backbone to capture the global crowd information.
Our method achieves new state-of-the-art results on several benchmarks both in weakly and fully-supervised crowd counting.
arXiv Detail & Related papers (2021-09-29T15:13:10Z) - HAT: Hierarchical Aggregation Transformers for Person Re-identification [87.02828084991062]
We take advantages of both CNNs and Transformers for image-based person Re-ID with high performance.
Work is the first to take advantages of both CNNs and Transformers for image-based person Re-ID.
arXiv Detail & Related papers (2021-07-13T09:34:54Z) - Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective
with Transformers [149.78470371525754]
We treat semantic segmentation as a sequence-to-sequence prediction task. Specifically, we deploy a pure transformer to encode an image as a sequence of patches.
With the global context modeled in every layer of the transformer, this encoder can be combined with a simple decoder to provide a powerful segmentation model, termed SEgmentation TRansformer (SETR)
SETR achieves new state of the art on ADE20K (50.28% mIoU), Pascal Context (55.83% mIoU) and competitive results on Cityscapes.
arXiv Detail & Related papers (2020-12-31T18:55:57Z) - Dense Residual Network: Enhancing Global Dense Feature Flow for
Character Recognition [75.4027660840568]
This paper explores how to enhance the local and global dense feature flow by exploiting hierarchical features fully from all the convolution layers.
Technically, we propose an efficient and effective CNN framework, i.e., Fast Dense Residual Network (FDRN) for text recognition.
arXiv Detail & Related papers (2020-01-23T06:55:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.