論文の概要: ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models
- arxiv url: http://arxiv.org/abs/2108.02938v1
- Date: Fri, 6 Aug 2021 04:43:13 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-09 14:33:38.973318
- Title: ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models
- Title(参考訳): ilvr:拡散確率モデルに対する条件付け方法
- Authors: Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, Youngjune Gwon, Sungroh
Yoon
- Abstract要約: DDPMにおける生成過程を誘導し,高品質な画像を生成するために,反復潜時可変リファインメント(ILVR)を提案する。
提案手法は,生成を制御しながら高品質な画像を生成する。
- 参考スコア(独自算出の注目度): 22.84873720309945
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Denoising diffusion probabilistic models (DDPM) have shown remarkable
performance in unconditional image generation. However, due to the
stochasticity of the generative process in DDPM, it is challenging to generate
images with the desired semantics. In this work, we propose Iterative Latent
Variable Refinement (ILVR), a method to guide the generative process in DDPM to
generate high-quality images based on a given reference image. Here, the
refinement of the generative process in DDPM enables a single DDPM to sample
images from various sets directed by the reference image. The proposed ILVR
method generates high-quality images while controlling the generation. The
controllability of our method allows adaptation of a single DDPM without any
additional learning in various image generation tasks, such as generation from
various downsampling factors, multi-domain image translation, paint-to-image,
and editing with scribbles.
- Abstract(参考訳): 非条件画像生成において拡散確率モデル(DDPM)は顕著な性能を示した。
しかし、DDPMにおける生成過程の確率性のため、所望のセマンティクスで画像を生成することは困難である。
本研究では,ddpmにおける生成過程を誘導し,与えられた参照画像に基づいて高品質な画像を生成する反復的潜在変数リファインメント(ilvr)を提案する。
ここでは、DDPMにおける生成過程の洗練により、単一のDDPMが参照画像によって指示された様々な集合の画像をサンプリングすることができる。
提案手法は,生成を制御しながら高品質な画像を生成する。
本手法の制御性は,様々なダウンサンプリング要因からの生成,多領域画像変換,ペイントツーイメージ,スクリブルによる編集など,様々な画像生成タスクで追加学習することなく,単一のddpmを適応させることができる。
関連論文リスト
- Generalized Consistency Trajectory Models for Image Manipulation [59.576781858809355]
拡散モデル(DM)は、画像編集や復元などの応用と同様に、無条件生成において優れている。
本研究の目的は、一般化されたCTM(GCTM)を提案することによって、整合性軌道モデル(CTM)の完全なポテンシャルを解放することである。
本稿では,GCTMの設計空間について論じ,画像から画像への変換,復元,編集など,様々な画像操作タスクにおいて有効性を示す。
論文 参考訳(メタデータ) (2024-03-19T07:24:54Z) - Referee Can Play: An Alternative Approach to Conditional Generation via
Model Inversion [35.21106030549071]
拡散確率モデル(DPM)はテキスト・画像生成タスクにおいて支配的な力である。
先進視覚言語モデル(VLM)の逆転手法として、最先端DPMの代替的視点を提案する。
差別的VLMを監督した画像を直接最適化することにより、提案手法はより優れたテキスト画像アライメントを実現することができる。
論文 参考訳(メタデータ) (2024-02-26T05:08:40Z) - Image Inpainting via Tractable Steering of Diffusion Models [54.13818673257381]
本稿では,トラクタブル確率モデル(TPM)の制約後部を正確に,かつ効率的に計算する能力を活用することを提案する。
具体的には、確率回路(PC)と呼ばれる表現型TPMのクラスを採用する。
提案手法は, 画像の全体的な品質とセマンティックコヒーレンスを, 計算オーバーヘッドを10%加えるだけで一貫的に改善できることを示す。
論文 参考訳(メタデータ) (2023-11-28T21:14:02Z) - Improving Denoising Diffusion Probabilistic Models via Exploiting Shared
Representations [5.517338199249029]
SR-DDPMはノイズ拡散過程を逆転することで高品質な画像を生成する生成モデルのクラスである。
多様なデータ分布の類似性を利用して、画像の品質を損なうことなく、複数のタスクにスケールできる。
提案手法を標準画像データセット上で評価し、FIDとSSIMの指標で条件付きDDPMと条件付きDDPMの両方より優れていることを示す。
論文 参考訳(メタデータ) (2023-11-27T22:30:26Z) - AdjointDPM: Adjoint Sensitivity Method for Gradient Backpropagation of Diffusion Probabilistic Models [103.41269503488546]
既存のカスタマイズ方法は、事前訓練された拡散確率モデルをユーザが提供する概念に合わせるために、複数の参照例にアクセスする必要がある。
本論文は、DPMカスタマイズの課題として、生成コンテンツ上で定義された差別化可能な指標が唯一利用可能な監督基準である場合に解決することを目的とする。
本稿では,拡散モデルから新しいサンプルを初めて生成するAdjointDPMを提案する。
次に、随伴感度法を用いて、損失の勾配をモデルのパラメータにバックプロパゲートする。
論文 参考訳(メタデータ) (2023-07-20T09:06:21Z) - CDPMSR: Conditional Diffusion Probabilistic Models for Single Image
Super-Resolution [91.56337748920662]
拡散確率モデル(DPM)は画像から画像への変換において広く採用されている。
単純だが自明なDPMベースの超解像後処理フレームワーク,すなわちcDPMSRを提案する。
本手法は, 定性的および定量的な結果の両面において, 先行試行を超越した手法である。
論文 参考訳(メタデータ) (2023-02-14T15:13:33Z) - SinDDM: A Single Image Denoising Diffusion Model [28.51951207066209]
単一画像上でのデノナイズ拡散モデルをトレーニングするためのフレームワークを提案する。
SinDDMを作成した本手法では,マルチスケール拡散プロセスを用いてトレーニング画像の内部統計を学習する。
これは、スタイル転送や調和など、幅広いタスクに適用できる。
論文 参考訳(メタデータ) (2022-11-29T20:44:25Z) - Accelerating Diffusion Models via Early Stop of the Diffusion Process [114.48426684994179]
Denoising Diffusion Probabilistic Models (DDPM) は、様々な世代タスクにおいて優れたパフォーマンスを実現している。
実際には、DDPMは高品質なサンプルを得るために何十万ものデノナイジングステップを必要とすることが多い。
本稿では,DDPMの早期停止型DDPM(Early-Stopped DDPM, ES-DDPM)の原理的高速化戦略を提案する。
論文 参考訳(メタデータ) (2022-05-25T06:40:09Z) - Denoising Diffusion Implicit Models [117.03720513930335]
DDPMと同様の訓練手順を施した反復的暗黙的確率モデルに対して,拡散暗黙モデル(DDIM)を提案する。
DDIMsは、DDPMsと比較して、壁面時間で10倍から50倍高速な高品質のサンプルを作成できる。
論文 参考訳(メタデータ) (2020-10-06T06:15:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。