論文の概要: Learning Meta-class Memory for Few-Shot Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2108.02958v1
- Date: Fri, 6 Aug 2021 06:29:59 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-09 14:32:12.223059
- Title: Learning Meta-class Memory for Few-Shot Semantic Segmentation
- Title(参考訳): 数ショット意味セグメンテーションのためのメタクラスメモリの学習
- Authors: Zhonghua Wu, Xiangxi Shi, Guosheng lin, Jianfei Cai
- Abstract要約: 全てのクラスで共有可能なメタ情報であるメタクラスの概念を導入する。
本稿では,メタクラスメモリをベースとした少ショットセグメンテーション手法 (MM-Net) を提案する。
提案したMM-Netは1ショット設定でCOCOデータセット上で37.5%のmIoUを達成する。
- 参考スコア(独自算出の注目度): 90.28474742651422
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Currently, the state-of-the-art methods treat few-shot semantic segmentation
task as a conditional foreground-background segmentation problem, assuming each
class is independent. In this paper, we introduce the concept of meta-class,
which is the meta information (e.g. certain middle-level features) shareable
among all classes. To explicitly learn meta-class representations in few-shot
segmentation task, we propose a novel Meta-class Memory based few-shot
segmentation method (MM-Net), where we introduce a set of learnable memory
embeddings to memorize the meta-class information during the base class
training and transfer to novel classes during the inference stage. Moreover,
for the $k$-shot scenario, we propose a novel image quality measurement module
to select images from the set of support images. A high-quality class prototype
could be obtained with the weighted sum of support image features based on the
quality measure. Experiments on both PASCAL-$5^i$ and COCO dataset shows that
our proposed method is able to achieve state-of-the-art results in both 1-shot
and 5-shot settings. Particularly, our proposed MM-Net achieves 37.5\% mIoU on
the COCO dataset in 1-shot setting, which is 5.1\% higher than the previous
state-of-the-art.
- Abstract(参考訳): 現在、最先端手法は、各クラスが独立であると仮定して、条件付き前景・後景セグメンテーション問題として、数少ない意味セグメンテーションタスクを扱う。
本稿では、メタクラスの概念、すなわちメタ情報(例えば、メタクラス)について紹介する。
特定のミドルレベルの特徴) すべてのクラスで共有できる。
そこで我々は,メタクラス学習時にメタクラス情報を記憶し,推論段階に新しいクラスに転送する学習可能なメモリ埋め込みのセットを導入する,メタクラスメモリベースのマイクロショットセグメンテーション手法(MM-Net)を提案する。
さらに,k$-shot シナリオでは,支援画像の集合から画像を選択するための新しい画像品質測定モジュールを提案する。
品質測定値に基づいて, 画像特徴量の重み付けで高品質なプロトタイプを得ることができた。
PASCAL-$5^i$とCOCOデータセットの両方で実験した結果,提案手法は1ショットと5ショットの両方で最先端の結果を得られることがわかった。
特に,提案するmm-netは,従来よりも5.1\%高い1ショット設定でcocoデータセット上で37.5\%miouを達成する。
関連論文リスト
- Iterative Few-shot Semantic Segmentation from Image Label Text [36.53926941601841]
ほとんどショットのセマンティックセマンティックセマンティクスは、いくつかのサポートイメージのガイダンスで、目に見えないクラスオブジェクトのセマンティクスを学ぶことを目的としている。
本稿では、強力な視覚言語モデルCLIPの助けを借りて、粗いマスクを生成するための一般的なフレームワークを提案する。
本手法は,野生および珍しいクラスの画像に対して,優れた一般化能力を有する。
論文 参考訳(メタデータ) (2023-03-10T01:48:14Z) - A Joint Framework Towards Class-aware and Class-agnostic Alignment for
Few-shot Segmentation [11.47479526463185]
Few-shotのセグメンテーションは、いくつかの注釈付きサポートイメージが与えられた未確認クラスのオブジェクトをセグメントすることを目的としている。
既存のほとんどのメソッドは、クエリ機能を独立したサポートプロトタイプで縫い付け、混合機能をデコーダに供給することでクエリイメージを分割する。
セグメンテーションを容易にするために,より価値の高いクラス認識とクラス非依存アライメントガイダンスを組み合わせた共同フレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-02T17:33:25Z) - MFNet: Multi-class Few-shot Segmentation Network with Pixel-wise Metric
Learning [34.059257121606336]
この研究は、まだほとんど探索されていない分野である少数ショットセマンティックセマンティックセグメンテーションに焦点を当てている。
まず,マルチウェイ符号化とデコードアーキテクチャを提案する。このアーキテクチャは,マルチスケールクエリ情報とマルチクラスサポート情報を1つのクエリ支援埋め込みに効果的に融合する。
標準ベンチマーク PASCAL-5i と COCO-20i による実験により, 数発のセグメンテーションにおいて, 本手法の利点が明らかに示された。
論文 参考訳(メタデータ) (2021-10-30T11:37:36Z) - InfoSeg: Unsupervised Semantic Image Segmentation with Mutual
Information Maximization [0.0]
局所的特徴と大域的高レベル特徴の相互情報に基づく教師なし画像表現の新しい手法を提案する。
最初のステップでは、ローカル機能とグローバル機能に基づいて、イメージをセグメント化する。
第2のステップでは,各クラスの局所的特徴と高次特徴との相互関係を最大化する。
論文 参考訳(メタデータ) (2021-10-07T14:01:42Z) - Boosting Few-shot Semantic Segmentation with Transformers [81.43459055197435]
TRansformer-based Few-shot Semantic segmentation Method (TRFS)
我々のモデルは,グローバル・エンハンスメント・モジュール(GEM)とローカル・エンハンスメント・モジュール(LEM)の2つのモジュールから構成される。
論文 参考訳(メタデータ) (2021-08-04T20:09:21Z) - Rectifying the Shortcut Learning of Background: Shared Object
Concentration for Few-Shot Image Recognition [101.59989523028264]
Few-Shot画像分類は、大規模なデータセットから学んだ事前学習された知識を利用して、一連の下流分類タスクに取り組むことを目的としている。
本研究では,Few-Shot LearningフレームワークであるCOSOCを提案する。
論文 参考訳(メタデータ) (2021-07-16T07:46:41Z) - Few-Shot Segmentation via Cycle-Consistent Transformer [74.49307213431952]
本稿では,サポートとターゲット画像間の画素ワイドな関係を利用して,数ショットのセマンティックセマンティックセグメンテーション作業を容易にすることに焦点を当てる。
本稿では, 有害なサポート機能を除去するために, 新規なサイクル一貫性アテンション機構を提案する。
提案したCyCTRは,従来の最先端手法と比較して著しく改善されている。
論文 参考訳(メタデータ) (2021-06-04T07:57:48Z) - Prior-Enhanced Few-Shot Segmentation with Meta-Prototypes [32.898636584823215]
Few-shot segmentation (FSS) のパフォーマンスは、エピソードトレーニングとクラスワイドプロトタイプの導入によって広範囲に向上している。
本稿では,これらの制約に対処するために,メタプロトタイプを用いた事前拡張ネットワークを提案する。
PASCAL-5i$とCOCO-20i$では平均IoUスコアが60.79%、41.16%となり,5ショット設定では3.49%,5.64%に向上した。
論文 参考訳(メタデータ) (2021-06-01T15:34:30Z) - SCNet: Enhancing Few-Shot Semantic Segmentation by Self-Contrastive
Background Prototypes [56.387647750094466]
Few-shot セマンティックセマンティックセマンティクスは,クエリイメージ内の新規クラスオブジェクトを,アノテーション付きの例で分割することを目的としている。
先進的なソリューションのほとんどは、各ピクセルを学習した前景のプロトタイプに合わせることでセグメンテーションを行うメトリクス学習フレームワークを利用している。
このフレームワークは、前景プロトタイプのみとのサンプルペアの不完全な構築のために偏った分類に苦しんでいます。
論文 参考訳(メタデータ) (2021-04-19T11:21:47Z) - Semantically Meaningful Class Prototype Learning for One-Shot Image
Semantic Segmentation [58.96902899546075]
ワンショットセマンティックイメージセグメンテーションは、1つの注釈付きイメージで新しいクラスのオブジェクト領域を分割することを目的としている。
最近の研究では、テスト時に予想される状況を模倣するために、エピソディクストレーニング戦略を採用している。
エピソードトレーニングにおいて,マルチクラスラベル情報を活用することを提案する。
ネットワークが各カテゴリに対してより意味のある機能を生成するように促すだろう。
論文 参考訳(メタデータ) (2021-02-22T12:07:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。