Quantum Gate for Kerr Nonlinear Parametric Oscillator Using Effective
Excited States
- URL: http://arxiv.org/abs/2108.03091v2
- Date: Tue, 19 Jul 2022 08:05:54 GMT
- Title: Quantum Gate for Kerr Nonlinear Parametric Oscillator Using Effective
Excited States
- Authors: Taro Kanao, Shumpei Masuda, Shiro Kawabata, Hayato Goto
- Abstract summary: We propose a method for a high-fidelity $R_x$ gate by exciting the KPO outside the qubit space with parity-selective transitions.
The proposed method can realize a continuous $R_x$ gate and thus is expected to be useful for, e.g., recently proposed variational quantum algorithms.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A Kerr nonlinear parametric oscillator (KPO) can stabilize a quantum
superposition of two coherent states with opposite phases, which can be used as
a qubit. In a universal gate set for quantum computation with KPOs, an $R_x$
gate, which interchanges the two coherent states, is relatively hard to perform
owing to the stability of the two states. We propose a method for a
high-fidelity $R_x$ gate by exciting the KPO outside the qubit space with
parity-selective transitions, which can be implemented by only adding a driving
field. In this method, the utilization of higher effective excited states leads
to a faster $R_x$ gate, rather than states near the qubit space. The proposed
method can realize a continuous $R_x$ gate and thus is expected to be useful
for, e.g., recently proposed variational quantum algorithms.
Related papers
- High-performance conditional-driving gate for Kerr parametric oscillator qubits [0.0]
We show that an AC-Zeeman shift due to the flux pulse for the gate operation largely affects the gate performance.
We propose a method to cancel this undesirable effect.
We numerically demonstrate a conditional-driving gate with average fidelity exceeding 99.9$%$ twice faster than that without the proposed method.
arXiv Detail & Related papers (2024-10-01T09:58:52Z) - Gate-based counterdiabatic driving with complexity guarantees [0.0]
We propose a general, fully gate-based quantum algorithm for counterdiabatic driving.
The algorithm does not depend on quadratics as in previous variational methods, and exploits regularisation of the adiabatic gauge potential to suppress only the transitions from the eigenstate of interest.
arXiv Detail & Related papers (2024-06-12T10:29:21Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent
and Incoherent Photons Found with Gradient Search [77.34726150561087]
We consider an environment formed by incoherent photons as a resource for controlling open quantum systems via an incoherent control.
We exploit a coherent control in the Hamiltonian and an incoherent control in the dissipator which induces the time-dependent decoherence rates.
arXiv Detail & Related papers (2023-02-28T07:36:02Z) - Demonstration of a Quantum Gate using Electromagnetically Induced
Transparency [0.0]
We demonstrate a native $mathrmCNOT$ gate between two individually addressed neutral atoms.
We present a number of technical improvements to advance this to a level required for fault-tolerant scaling.
arXiv Detail & Related papers (2022-04-07T20:59:12Z) - Two-qubit gate using conditional driving for highly detuned
Kerr-nonlinear parametric oscillators [0.0]
We propose a two-qubit gate $R_zz$ for highly detuned KPOs.
We perform simulations using a conventional KPO Hamiltonian derived from a superconducting-circuit model.
The simulation results indicate that two-qubit gates can be implemented with high fidelity.
arXiv Detail & Related papers (2022-04-07T10:40:13Z) - Quantum simulation of $\phi^4$ theories in qudit systems [53.122045119395594]
We discuss the implementation of quantum algorithms for lattice $Phi4$ theory on circuit quantum electrodynamics (cQED) system.
The main advantage of qudit systems is that its multi-level characteristic allows the field interaction to be implemented only with diagonal single-qudit gates.
arXiv Detail & Related papers (2021-08-30T16:30:33Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Universal set of quantum gates for the flip-flop qubit in the presence
of 1/f noise [0.0]
A universal set of quantum gates for flip-flop qubits is proposed.
The effect of a realistic 1/f noise on the gate fidelity is investigated.
arXiv Detail & Related papers (2021-04-29T13:46:54Z) - Preparation of excited states for nuclear dynamics on a quantum computer [117.44028458220427]
We study two different methods to prepare excited states on a quantum computer.
We benchmark these techniques on emulated and real quantum devices.
These findings show that quantum techniques designed to achieve good scaling on fault tolerant devices might also provide practical benefits on devices with limited connectivity and gate fidelity.
arXiv Detail & Related papers (2020-09-28T17:21:25Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.