Gate-based counterdiabatic driving with complexity guarantees
- URL: http://arxiv.org/abs/2406.08064v3
- Date: Wed, 09 Oct 2024 10:15:39 GMT
- Title: Gate-based counterdiabatic driving with complexity guarantees
- Authors: Dyon van Vreumingen,
- Abstract summary: We propose a general, fully gate-based quantum algorithm for counterdiabatic driving.
The algorithm does not depend on quadratics as in previous variational methods, and exploits regularisation of the adiabatic gauge potential to suppress only the transitions from the eigenstate of interest.
- Score: 0.0
- License:
- Abstract: We propose a general, fully gate-based quantum algorithm for counterdiabatic driving. The algorithm does not depend on heuristics as in previous variational methods, and exploits regularisation of the adiabatic gauge potential to suppress only the transitions from the eigenstate of interest. This allows for a rigorous quantum gate complexity upper bound in terms of the minimum gap $\Delta$ around this eigenstate. We find that, in the worst case, the algorithm requires at most $\tilde O(\Delta^{-(3 + o(1))} \epsilon^{-(1 + o(1))})$ quantum gates to achieve a target state fidelity of at least $1 - \epsilon^2$, where $\Delta$ is the minimum spectral gap. In certain cases, the gap dependence can be improved to quadratic.
Related papers
- High-precision and low-depth eigenstate property estimation: theory and resource estimation [2.6811507121199325]
Estimating the eigenstate properties of quantum many-body systems is a long-standing, challenging problem for both classical and quantum computing.
Here, we present a full-stack design of a random sampling algorithm for estimating the eigenenergy and the observable expectations on the eigenstates.
arXiv Detail & Related papers (2024-06-06T17:54:26Z) - Calculating response functions of coupled oscillators using quantum phase estimation [40.31060267062305]
We study the problem of estimating frequency response functions of systems of coupled, classical harmonic oscillators using a quantum computer.
Our proposed quantum algorithm operates in the standard $s-sparse, oracle-based query access model.
We show that a simple adaptation of our algorithm solves the random glued-trees problem in time.
arXiv Detail & Related papers (2024-05-14T15:28:37Z) - Hamiltonian simulation for low-energy states with optimal time dependence [45.02537589779136]
We consider the task of simulating time evolution under a Hamiltonian $H$ within its low-energy subspace.
We present a quantum algorithm that uses $O(tsqrtlambdaGamma + sqrtlambda/Gammalog (1/epsilon))$ queries to the block-encoding for any $Gamma$.
arXiv Detail & Related papers (2024-04-04T17:58:01Z) - On adaptive low-depth quantum algorithms for robust multiple-phase
estimation [11.678822620192438]
We present robust multiple-phase estimation (RMPE) algorithms with Heisenberg-limited scaling.
These algorithms are particularly suitable for early fault-tolerant quantum computers.
arXiv Detail & Related papers (2023-03-14T17:38:01Z) - Even shorter quantum circuit for phase estimation on early
fault-tolerant quantum computers with applications to ground-state energy
estimation [5.746732081406236]
We develop a phase estimation method with a distinct feature.
The total cost of the algorithm satisfies the Heisenberg-limited scaling $widetildemathcalO(epsilon-1)$.
Our algorithm may significantly reduce the circuit depth for performing phase estimation tasks on early fault-tolerant quantum computers.
arXiv Detail & Related papers (2022-11-22T03:15:40Z) - Random quantum circuits transform local noise into global white noise [118.18170052022323]
We study the distribution over measurement outcomes of noisy random quantum circuits in the low-fidelity regime.
For local noise that is sufficiently weak and unital, correlations (measured by the linear cross-entropy benchmark) between the output distribution $p_textnoisy$ of a generic noisy circuit instance shrink exponentially.
If the noise is incoherent, the output distribution approaches the uniform distribution $p_textunif$ at precisely the same rate.
arXiv Detail & Related papers (2021-11-29T19:26:28Z) - Approaching the theoretical limit in quantum gate decomposition [0.0]
We propose a novel numerical approach to decompose general quantum programs in terms of single- and two-qubit quantum gates with a $CNOT$ gate count.
Our approach is based on a sequential optimization of parameters related to the single-qubit rotation gates involved in a pre-designed quantum circuit used for the decomposition.
arXiv Detail & Related papers (2021-09-14T15:36:22Z) - Quantum Gate for Kerr Nonlinear Parametric Oscillator Using Effective
Excited States [0.0]
We propose a method for a high-fidelity $R_x$ gate by exciting the KPO outside the qubit space with parity-selective transitions.
The proposed method can realize a continuous $R_x$ gate and thus is expected to be useful for, e.g., recently proposed variational quantum algorithms.
arXiv Detail & Related papers (2021-08-06T12:59:29Z) - The Complexity of Nonconvex-Strongly-Concave Minimax Optimization [43.07732143522183]
This paper establishes the complexity for finding approximate stationary points of non-strongly-concave (NC-SC) smooth minimax problems.
We deploy a proposed sequence of $Omega-strong$lyconcave sub-2 problems in both general complexity and averaged complexity.
In our proposed finite-sum setting, our proposed algorithm provides a nearly-tight dependence on the condition number.
arXiv Detail & Related papers (2021-03-29T18:53:57Z) - Random quantum circuits anti-concentrate in log depth [118.18170052022323]
We study the number of gates needed for the distribution over measurement outcomes for typical circuit instances to be anti-concentrated.
Our definition of anti-concentration is that the expected collision probability is only a constant factor larger than if the distribution were uniform.
In both the case where the gates are nearest-neighbor on a 1D ring and the case where gates are long-range, we show $O(n log(n)) gates are also sufficient.
arXiv Detail & Related papers (2020-11-24T18:44:57Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.