Incremental learning of LSTM framework for sensor fusion in attitude
estimation
- URL: http://arxiv.org/abs/2108.03173v1
- Date: Wed, 4 Aug 2021 09:03:53 GMT
- Title: Incremental learning of LSTM framework for sensor fusion in attitude
estimation
- Authors: Parag Narkhede, Rahee Walambe, Shashi Poddar, Ketan Kotecha
- Abstract summary: This paper presents a novel method for attitude estimation of an object in 3D space by incremental learning of the Long-Short Term Memory (LSTM) network.
Inertial sensors data are fed to the LSTM network which are then updated incrementally to incorporate the dynamic changes in motion occurring in the run time.
The proposed framework offers a significant improvement in the results compared to the traditional method, even in the case of a highly dynamic environment.
- Score: 2.064612766965483
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a novel method for attitude estimation of an object in 3D
space by incremental learning of the Long-Short Term Memory (LSTM) network.
Gyroscope, accelerometer, and magnetometer are few widely used sensors in
attitude estimation applications. Traditionally, multi-sensor fusion methods
such as the Extended Kalman Filter and Complementary Filter are employed to
fuse the measurements from these sensors. However, these methods exhibit
limitations in accounting for the uncertainty, unpredictability, and dynamic
nature of the motion in real-world situations. In this paper, the inertial
sensors data are fed to the LSTM network which are then updated incrementally
to incorporate the dynamic changes in motion occurring in the run time. The
robustness and efficiency of the proposed framework is demonstrated on the
dataset collected from a commercially available inertial measurement unit. The
proposed framework offers a significant improvement in the results compared to
the traditional method, even in the case of a highly dynamic environment. The
LSTM framework-based attitude estimation approach can be deployed on a standard
AI-supported processing module for real-time applications.
Related papers
- 3D Multi-Object Tracking with Semi-Supervised GRU-Kalman Filter [6.13623925528906]
3D Multi-Object Tracking (MOT) is essential for intelligent systems like autonomous driving and robotic sensing.
We propose a GRU-based MOT method, which introduces a learnable Kalman filter into the motion module.
This approach is able to learn object motion characteristics through data-driven learning, thereby avoiding the need for manual model design and model error.
arXiv Detail & Related papers (2024-11-13T08:34:07Z) - KFD-NeRF: Rethinking Dynamic NeRF with Kalman Filter [49.85369344101118]
We introduce KFD-NeRF, a novel dynamic neural radiance field integrated with an efficient and high-quality motion reconstruction framework based on Kalman filtering.
Our key idea is to model the dynamic radiance field as a dynamic system whose temporally varying states are estimated based on two sources of knowledge: observations and predictions.
Our KFD-NeRF demonstrates similar or even superior performance within comparable computational time and state-of-the-art view synthesis performance with thorough training.
arXiv Detail & Related papers (2024-07-18T05:48:24Z) - DynST: Dynamic Sparse Training for Resource-Constrained Spatio-Temporal
Forecasting [24.00162014044092]
Earth science systems rely heavily on the extensive deployment of sensors.
Traditional approaches to sensor deployment utilize specific algorithms to design and deploy sensors.
In this paper, we introduce for the first time the concept of dynamic sparse training and are committed to adaptively, dynamically filtering important sensor data.
arXiv Detail & Related papers (2024-03-05T12:31:24Z) - DiffusionPoser: Real-time Human Motion Reconstruction From Arbitrary Sparse Sensors Using Autoregressive Diffusion [10.439802168557513]
Motion capture from a limited number of body-worn sensors has important applications in health, human performance, and entertainment.
Recent work has focused on accurately reconstructing whole-body motion from a specific sensor configuration using six IMUs.
We propose a single diffusion model, DiffusionPoser, which reconstructs human motion in real-time from an arbitrary combination of sensors.
arXiv Detail & Related papers (2023-08-31T12:36:50Z) - DA-LSTM: A Dynamic Drift-Adaptive Learning Framework for Interval Load
Forecasting with LSTM Networks [1.3342521220589318]
A drift magnitude threshold should be defined to design change detection methods to identify drifts.
We propose a dynamic drift-adaptive Long Short-Term Memory (DA-LSTM) framework that can improve the performance of load forecasting models.
arXiv Detail & Related papers (2023-05-15T16:26:03Z) - Towards Scale-Aware, Robust, and Generalizable Unsupervised Monocular
Depth Estimation by Integrating IMU Motion Dynamics [74.1720528573331]
Unsupervised monocular depth and ego-motion estimation has drawn extensive research attention in recent years.
We propose DynaDepth, a novel scale-aware framework that integrates information from vision and IMU motion dynamics.
We validate the effectiveness of DynaDepth by conducting extensive experiments and simulations on the KITTI and Make3D datasets.
arXiv Detail & Related papers (2022-07-11T07:50:22Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z) - Transformer Inertial Poser: Attention-based Real-time Human Motion
Reconstruction from Sparse IMUs [79.72586714047199]
We propose an attention-based deep learning method to reconstruct full-body motion from six IMU sensors in real-time.
Our method achieves new state-of-the-art results both quantitatively and qualitatively, while being simple to implement and smaller in size.
arXiv Detail & Related papers (2022-03-29T16:24:52Z) - Learning to Continuously Optimize Wireless Resource In Episodically
Dynamic Environment [55.91291559442884]
This work develops a methodology that enables data-driven methods to continuously learn and optimize in a dynamic environment.
We propose to build the notion of continual learning into the modeling process of learning wireless systems.
Our design is based on a novel min-max formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2020-11-16T08:24:34Z) - IMU Preintegrated Features for Efficient Deep Inertial Odometry [0.0]
Inertial measurement units (IMUs) as ubiquitous proprioceptive motion measurement devices are available on various gadgets and robotic platforms.
Direct inference of geometrical transformations or odometry based on these data alone is a challenging task.
This paper proposes the IMU preintegrated features as a replacement for the raw IMU data in deep inertial odometry.
arXiv Detail & Related papers (2020-07-06T17:58:35Z) - Deep Soft Procrustes for Markerless Volumetric Sensor Alignment [81.13055566952221]
In this work, we improve markerless data-driven correspondence estimation to achieve more robust multi-sensor spatial alignment.
We incorporate geometric constraints in an end-to-end manner into a typical segmentation based model and bridge the intermediate dense classification task with the targeted pose estimation one.
Our model is experimentally shown to achieve similar results with marker-based methods and outperform the markerless ones, while also being robust to the pose variations of the calibration structure.
arXiv Detail & Related papers (2020-03-23T10:51:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.