Progressive Inertial Poser: Progressive Real-Time Kinematic Chain Estimation for 3D Full-Body Pose from Three IMU Sensors
- URL: http://arxiv.org/abs/2505.05336v1
- Date: Thu, 08 May 2025 15:28:09 GMT
- Title: Progressive Inertial Poser: Progressive Real-Time Kinematic Chain Estimation for 3D Full-Body Pose from Three IMU Sensors
- Authors: Zunjie Zhu, Yan Zhao, Yihan Hu, Guoxiang Wang, Hai Qiu, Bolun Zheng, Chenggang Yan, Feng Xu,
- Abstract summary: Full-body pose estimation from sparse tracking signals is not limited by environmental conditions or recording range.<n>Previous works either face the challenge of wearing additional sensors on the pelvis and lower-body or rely on external visual sensors to obtain global positions of key joints.<n>To improve the practicality of the technology for virtual reality applications, we estimate full-body poses using only inertial data obtained from three Inertial Measurement Unit (IMU) sensors worn on the head and wrists.
- Score: 25.67875816218477
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The motion capture system that supports full-body virtual representation is of key significance for virtual reality. Compared to vision-based systems, full-body pose estimation from sparse tracking signals is not limited by environmental conditions or recording range. However, previous works either face the challenge of wearing additional sensors on the pelvis and lower-body or rely on external visual sensors to obtain global positions of key joints. To improve the practicality of the technology for virtual reality applications, we estimate full-body poses using only inertial data obtained from three Inertial Measurement Unit (IMU) sensors worn on the head and wrists, thereby reducing the complexity of the hardware system. In this work, we propose a method called Progressive Inertial Poser (ProgIP) for human pose estimation, which combines neural network estimation with a human dynamics model, considers the hierarchical structure of the kinematic chain, and employs a multi-stage progressive network estimation with increased depth to reconstruct full-body motion in real time. The encoder combines Transformer Encoder and bidirectional LSTM (TE-biLSTM) to flexibly capture the temporal dependencies of the inertial sequence, while the decoder based on multi-layer perceptrons (MLPs) transforms high-dimensional features and accurately projects them onto Skinned Multi-Person Linear (SMPL) model parameters. Quantitative and qualitative experimental results on multiple public datasets show that our method outperforms state-of-the-art methods with the same inputs, and is comparable to recent works using six IMU sensors.
Related papers
- Synth It Like KITTI: Synthetic Data Generation for Object Detection in Driving Scenarios [3.30184292168618]
We propose a dataset generation pipeline based on the CARLA simulator for 3D object detection on LiDAR point clouds.<n>We are able to train an object detector on the synthetic data and demonstrate strong generalization capabilities to the KITTI dataset.
arXiv Detail & Related papers (2025-02-20T22:27:42Z) - Sparse identification of nonlinear dynamics and Koopman operators with Shallow Recurrent Decoder Networks [3.1484174280822845]
We present a method to jointly solve the sensing and model identification problems with simple implementation, efficient, and robust performance.<n>SINDy-SHRED uses Gated Recurrent Units to model sparse sensor measurements along with a shallow network decoder to reconstruct the full-temporal field from the latent state space.<n>We conduct systematic experimental studies on PDE data such as turbulent flows, real-world sensor measurements for sea surface temperature, and direct video data.
arXiv Detail & Related papers (2025-01-23T02:18:13Z) - XR-MBT: Multi-modal Full Body Tracking for XR through Self-Supervision with Learned Depth Point Cloud Registration [19.874691210555472]
XR-MBT tracks legs in XR for the first time, whereas traditional synthesis approaches based on partial body tracking are blind.<n>We demonstrate how current 3-point motion synthesis models can be extended to point cloud modalities.
arXiv Detail & Related papers (2024-11-27T14:25:32Z) - ALOcc: Adaptive Lifting-based 3D Semantic Occupancy and Cost Volume-based Flow Prediction [89.89610257714006]
Existing methods prioritize higher accuracy to cater to the demands of these tasks.
We introduce a series of targeted improvements for 3D semantic occupancy prediction and flow estimation.
Our purelytemporalal architecture framework, named ALOcc, achieves an optimal tradeoff between speed and accuracy.
arXiv Detail & Related papers (2024-11-12T11:32:56Z) - Dynamic Inertial Poser (DynaIP): Part-Based Motion Dynamics Learning for
Enhanced Human Pose Estimation with Sparse Inertial Sensors [17.3834029178939]
This paper introduces a novel human pose estimation approach using sparse inertial sensors.
It leverages a diverse array of real inertial motion capture data from different skeleton formats to improve motion diversity and model generalization.
The approach demonstrates superior performance over state-of-the-art models across five public datasets, notably reducing pose error by 19% on the DIP-IMU dataset.
arXiv Detail & Related papers (2023-12-02T13:17:10Z) - Realistic Full-Body Tracking from Sparse Observations via Joint-Level
Modeling [13.284947022380404]
We propose a two-stage framework that can obtain accurate and smooth full-body motions with three tracking signals of head and hands only.
Our framework explicitly models the joint-level features in the first stage and utilizes them astemporal tokens for alternating spatial and temporal transformer blocks to capture joint-level correlations in the second stage.
With extensive experiments on the AMASS motion dataset and real-captured data, we show our proposed method can achieve more accurate and smooth motion compared to existing approaches.
arXiv Detail & Related papers (2023-08-17T08:27:55Z) - UniTR: A Unified and Efficient Multi-Modal Transformer for
Bird's-Eye-View Representation [113.35352122662752]
We present an efficient multi-modal backbone for outdoor 3D perception named UniTR.
UniTR processes a variety of modalities with unified modeling and shared parameters.
UniTR is also a fundamentally task-agnostic backbone that naturally supports different 3D perception tasks.
arXiv Detail & Related papers (2023-08-15T12:13:44Z) - HUM3DIL: Semi-supervised Multi-modal 3D Human Pose Estimation for
Autonomous Driving [95.42203932627102]
3D human pose estimation is an emerging technology, which can enable the autonomous vehicle to perceive and understand the subtle and complex behaviors of pedestrians.
Our method efficiently makes use of these complementary signals, in a semi-supervised fashion and outperforms existing methods with a large margin.
Specifically, we embed LiDAR points into pixel-aligned multi-modal features, which we pass through a sequence of Transformer refinement stages.
arXiv Detail & Related papers (2022-12-15T11:15:14Z) - Progressive Multi-view Human Mesh Recovery with Self-Supervision [68.60019434498703]
Existing solutions typically suffer from poor generalization performance to new settings.
We propose a novel simulation-based training pipeline for multi-view human mesh recovery.
arXiv Detail & Related papers (2022-12-10T06:28:29Z) - Back to MLP: A Simple Baseline for Human Motion Prediction [59.18776744541904]
This paper tackles the problem of human motion prediction, consisting in forecasting future body poses from historically observed sequences.
We show that the performance of these approaches can be surpassed by a light-weight and purely architectural architecture with only 0.14M parameters.
An exhaustive evaluation on Human3.6M, AMASS and 3DPW datasets shows that our method, which we dub siMLPe, consistently outperforms all other approaches.
arXiv Detail & Related papers (2022-07-04T16:35:58Z) - Transformer Inertial Poser: Attention-based Real-time Human Motion
Reconstruction from Sparse IMUs [79.72586714047199]
We propose an attention-based deep learning method to reconstruct full-body motion from six IMU sensors in real-time.
Our method achieves new state-of-the-art results both quantitatively and qualitatively, while being simple to implement and smaller in size.
arXiv Detail & Related papers (2022-03-29T16:24:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.