論文の概要: (Just) A Spoonful of Refinements Helps the Registration Error Go Down
- arxiv url: http://arxiv.org/abs/2108.03257v1
- Date: Fri, 6 Aug 2021 18:05:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-10 15:33:36.597625
- Title: (Just) A Spoonful of Refinements Helps the Registration Error Go Down
- Title(参考訳): (単に)リファインメントのスポンジが登録エラーの解消に役立ちます
- Authors: S\'ergio Agostinho, Aljo\v{s}a O\v{s}ep, Alessio Del Bue, Laura
Leal-Taix\'e
- Abstract要約: モデル学習中の点対応学習を,元の最適化問題を拡張して改善できることを示す。
実験により,既存の学習ベース登録手法に識別可能な層を接続することにより,対応性の向上が得られた。
- 参考スコア(独自算出の注目度): 11.657142322476405
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We tackle data-driven 3D point cloud registration. Given point
correspondences, the standard Kabsch algorithm provides an optimal rotation
estimate. This allows to train registration models in an end-to-end manner by
differentiating the SVD operation. However, given the initial rotation estimate
supplied by Kabsch, we show we can improve point correspondence learning during
model training by extending the original optimization problem. In particular,
we linearize the governing constraints of the rotation matrix and solve the
resulting linear system of equations. We then iteratively produce new solutions
by updating the initial estimate. Our experiments show that, by plugging our
differentiable layer to existing learning-based registration methods, we
improve the correspondence matching quality. This yields up to a 7% decrease in
rotation error for correspondence-based data-driven registration methods.
- Abstract(参考訳): データ駆動型3dポイントクラウド登録に取り組む。
与えられた点対応により、標準カブシュアルゴリズムは最適な回転推定を提供する。
これにより、SVD操作を区別することで、エンドツーエンドで登録モデルをトレーニングすることができる。
しかし, カブシュが提供した初期回転推定値から, モデル学習時の点対応学習を, 元の最適化問題を拡張して改善できることを示す。
特に、回転行列の制御制約を線形化し、結果として得られる方程式の線形系を解く。
次に、初期推定値を更新して、反復的に新しい解を生成する。
実験により,既存の学習ベース登録手法に微分可能な層を接続することにより,対応マッチング品質が向上することを示す。
これにより、対応ベースのデータ駆動登録方式では、回転誤差が7%減少する。
関連論文リスト
- SPARE: Symmetrized Point-to-Plane Distance for Robust Non-Rigid Registration [76.40993825836222]
本研究では,SPAREを提案する。SPAREは,非剛性登録のための対称化点-平面間距離を用いた新しい定式化である。
提案手法は, 厳密でない登録問題の精度を大幅に向上し, 比較的高い解効率を維持する。
論文 参考訳(メタデータ) (2024-05-30T15:55:04Z) - Gradient Boosting Mapping for Dimensionality Reduction and Feature Extraction [2.778647101651566]
教師あり学習における根本的な問題は、優れた特徴や距離尺度を見つけることである。
本稿では,弱い学習者の出力が埋め込みを定義する,教師付き次元削減手法を提案する。
組込み座標は教師付き学習タスクにより良い機能を提供することを示す。
論文 参考訳(メタデータ) (2024-05-14T10:23:57Z) - Low-rank extended Kalman filtering for online learning of neural
networks from streaming data [71.97861600347959]
非定常データストリームから非線形関数のパラメータを推定するための効率的なオンライン近似ベイズ推定アルゴリズムを提案する。
この方法は拡張カルマンフィルタ (EKF) に基づいているが、新しい低ランク+斜角行列分解法を用いている。
変分推論に基づく手法とは対照的に,本手法は完全に決定論的であり,ステップサイズチューニングを必要としない。
論文 参考訳(メタデータ) (2023-05-31T03:48:49Z) - One-Pass Learning via Bridging Orthogonal Gradient Descent and Recursive
Least-Squares [8.443742714362521]
我々は,従来のデータポイントの予測にほとんど変化しない方向にパラメータを変更しながら,すべての新しいデータポイントに完全に適合するワンパス学習アルゴリズムを開発した。
我々のアルゴリズムは、インクリメンタル・プリンシパル・コンポーネント分析(IPCA)を用いてストリーミングデータの構造を利用して、メモリを効率的に利用する。
本実験では,提案手法の有効性をベースラインと比較した。
論文 参考訳(メタデータ) (2022-07-28T02:01:31Z) - Cogradient Descent for Dependable Learning [64.02052988844301]
双線形最適化問題に対処するために,CoGDアルゴリズムに基づく信頼度の高い学習法を提案する。
CoGDは、ある変数がスパーシティ制約を持つ場合の双線形問題を解くために導入された。
また、特徴と重みの関連を分解するためにも使用できるため、畳み込みニューラルネットワーク(CNN)をより良く訓練するための我々の手法をさらに一般化することができる。
論文 参考訳(メタデータ) (2021-06-20T04:28:20Z) - Overcoming Catastrophic Forgetting via Direction-Constrained
Optimization [43.53836230865248]
連続的な学習フレームワークにおいて,分類ネットワークの固定アーキテクチャを用いてディープラーニングモデルを学習するための最適化アルゴリズムの新たな設計について検討する。
本稿では,方向制約付き最適化(DCO)法について述べる。各タスクに対して,対応する最上向きの主方向を近似する線形オートエンコーダを導入する。
我々のアルゴリズムは、他の最先端の正規化に基づく連続学習法と比較して好適に機能することを示した。
論文 参考訳(メタデータ) (2020-11-25T08:45:21Z) - Short-Term Memory Optimization in Recurrent Neural Networks by
Autoencoder-based Initialization [79.42778415729475]
線形オートエンコーダを用いた列列の明示的暗記に基づく代替解を提案する。
このような事前学習が、長いシーケンスで難しい分類タスクを解くのにどのように役立つかを示す。
提案手法は, 長周期の復元誤差をはるかに小さくし, 微調整時の勾配伝播を良くすることを示す。
論文 参考訳(メタデータ) (2020-11-05T14:57:16Z) - Deep-3DAligner: Unsupervised 3D Point Set Registration Network With
Optimizable Latent Vector [15.900382629390297]
本稿では,3次元登録における技術的課題に対処するために,学習に最適化を統合する新しいモデルを提案する。
ディープトランスフォーメーションデコーディングネットワークに加えて、我々のフレームワークは最適化可能なディープアンダーラインSpatial UnderlineCorrelation UnderlineRepresentationを導入している。
論文 参考訳(メタデータ) (2020-09-29T22:44:38Z) - DeepGMR: Learning Latent Gaussian Mixture Models for Registration [113.74060941036664]
ポイントクラウドの登録は、3Dコンピュータビジョン、グラフィックス、ロボット工学の基本的な問題である。
本稿では,最初の学習ベース登録法であるDeep Gaussian Mixture Registration(DeepGMR)を紹介する。
提案手法は,最先端の幾何学的および学習的登録手法と比較して,良好な性能を示す。
論文 参考訳(メタデータ) (2020-08-20T17:25:16Z) - Neural Non-Rigid Tracking [26.41847163649205]
我々は、新しい、エンドツーエンドの学習可能、差別化可能な非剛性トラッカーを導入する。
我々は畳み込みニューラルネットワークを用いて、密度の高い通信とその信頼性を予測する。
現状の手法と比較して,提案アルゴリズムは再構築性能の向上を示す。
論文 参考訳(メタデータ) (2020-06-23T18:00:39Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
双線形問題に対処するために、CoGDアルゴリズム(Cogradient Descent Algorithm)を導入する。
一方の変数は、他方の変数との結合関係を考慮し、同期勾配降下をもたらす。
本アルゴリズムは,空間的制約下での1変数の問題を解くために応用される。
論文 参考訳(メタデータ) (2020-06-16T13:41:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。