A Categorized Reflection Removal Dataset with Diverse Real-world Scenes
- URL: http://arxiv.org/abs/2108.03380v1
- Date: Sat, 7 Aug 2021 06:56:57 GMT
- Title: A Categorized Reflection Removal Dataset with Diverse Real-world Scenes
- Authors: Chenyang Lei, Xuhua Huang, Chenyang Qi, Yankun Zhao, Wenxiu Sun, Qiong
Yan, Qifeng Chen
- Abstract summary: We construct a new reflection removal dataset that is categorized, diverse, and real-world (CDR)
The dataset is constructed using diverse glass types under various environments to ensure diversity.
We show that state-of-the-art reflection removal methods generally perform well on blurry reflection but fail in obtaining satisfying performance on other types of real-world reflection.
- Score: 54.662456878340215
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the lack of a large-scale reflection removal dataset with diverse
real-world scenes, many existing reflection removal methods are trained on
synthetic data plus a small amount of real-world data, which makes it difficult
to evaluate the strengths or weaknesses of different reflection removal methods
thoroughly. Furthermore, existing real-world benchmarks and datasets do not
categorize image data based on the types and appearances of reflection (e.g.,
smoothness, intensity), making it hard to analyze reflection removal methods.
Hence, we construct a new reflection removal dataset that is categorized,
diverse, and real-world (CDR). A pipeline based on RAW data is used to capture
perfectly aligned input images and transmission images. The dataset is
constructed using diverse glass types under various environments to ensure
diversity. By analyzing several reflection removal methods and conducting
extensive experiments on our dataset, we show that state-of-the-art reflection
removal methods generally perform well on blurry reflection but fail in
obtaining satisfying performance on other types of real-world reflection. We
believe our dataset can help develop novel methods to remove real-world
reflection better. Our dataset is available at
https://alexzhao-hugga.github.io/Real-World-Reflection-Removal/.
Related papers
- Towards Flexible Interactive Reflection Removal with Human Guidance [75.38207315080624]
Single image reflection removal is inherently ambiguous, as both the reflection and transmission components requiring separation may follow natural image statistics.
Existing methods attempt to address the issue by using various types of low-level and physics-based cues as sources of reflection signals.
In this paper, we aim to explore a novel flexible interactive reflection removal approach that leverages various forms of sparse human guidance.
arXiv Detail & Related papers (2024-06-03T17:34:37Z) - Revisiting Single Image Reflection Removal In the Wild [83.42368937164473]
This research focuses on the issue of single-image reflection removal (SIRR) in real-world conditions.
We devise an advanced reflection collection pipeline that is highly adaptable to a wide range of real-world reflection scenarios.
We develop a large-scale, high-quality reflection dataset named Reflection Removal in the Wild (RRW)
arXiv Detail & Related papers (2023-11-29T02:31:10Z) - ReflectNet -- A Generative Adversarial Method for Single Image
Reflection Suppression [0.6980076213134382]
We propose a single image reflection removal method based on context understanding modules and adversarial training.
Our proposed reflection removal method outperforms state-of-the-art methods in terms of PSNR and SSIM on the SIR benchmark dataset.
arXiv Detail & Related papers (2021-05-11T17:33:40Z) - Iterative Gradient Encoding Network with Feature Co-Occurrence Loss for
Single Image Reflection Removal [6.370905925442655]
We propose an iterative gradient encoding network for single image reflection removal.
Our method can remove reflection favorably against the existing state-of-the-art method on all imaging settings.
arXiv Detail & Related papers (2021-03-29T19:29:29Z) - Location-aware Single Image Reflection Removal [54.93808224890273]
This paper proposes a novel location-aware deep learning-based single image reflection removal method.
We use a reflection confidence map as the cues for the network to learn how to encode the reflection information adaptively.
The integration of location information into the network significantly improves the quality of reflection removal results.
arXiv Detail & Related papers (2020-12-13T19:34:35Z) - Two-Stage Single Image Reflection Removal with Reflection-Aware Guidance [78.34235841168031]
We present a novel two-stage network with reflection-aware guidance (RAGNet) for single image reflection removal (SIRR)
RAG can be used (i) to mitigate the effect of reflection from the observation, and (ii) to generate mask in partial convolution for mitigating the effect of deviating from linear combination hypothesis.
Experiments on five commonly used datasets demonstrate the quantitative and qualitative superiority of our RAGNet in comparison to the state-of-the-art SIRR methods.
arXiv Detail & Related papers (2020-12-02T03:14:57Z) - Unsupervised Single-Image Reflection Separation Using Perceptual Deep
Image Priors [6.333390830515411]
We propose a novel unsupervised framework for single-image reflection separation.
We optimize the parameters of two cross-coupled deep convolutional networks on a target image to generate two exclusive background and reflection layers.
Our results show that our method significantly outperforms the closest unsupervised method in the literature for removing reflections from single images.
arXiv Detail & Related papers (2020-09-01T21:08:30Z) - Polarized Reflection Removal with Perfect Alignment in the Wild [66.48211204364142]
We present a novel formulation to removing reflection from polarized images in the wild.
We first identify the misalignment issues of existing reflection removal datasets.
We build a new dataset with more than 100 types of glass in which obtained transmission images are perfectly aligned with input mixed images.
arXiv Detail & Related papers (2020-03-28T13:29:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.