Two-Stage Single Image Reflection Removal with Reflection-Aware Guidance
- URL: http://arxiv.org/abs/2012.00945v2
- Date: Sun, 21 Feb 2021 07:53:31 GMT
- Title: Two-Stage Single Image Reflection Removal with Reflection-Aware Guidance
- Authors: Yu Li, Ming Liu, Yaling Yi, Qince Li, Dongwei Ren, Wangmeng Zuo
- Abstract summary: We present a novel two-stage network with reflection-aware guidance (RAGNet) for single image reflection removal (SIRR)
RAG can be used (i) to mitigate the effect of reflection from the observation, and (ii) to generate mask in partial convolution for mitigating the effect of deviating from linear combination hypothesis.
Experiments on five commonly used datasets demonstrate the quantitative and qualitative superiority of our RAGNet in comparison to the state-of-the-art SIRR methods.
- Score: 78.34235841168031
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Removing undesired reflection from an image captured through a glass surface
is a very challenging problem with many practical application scenarios. For
improving reflection removal, cascaded deep models have been usually adopted to
estimate the transmission in a progressive manner. However, most existing
methods are still limited in exploiting the result in prior stage for guiding
transmission estimation. In this paper, we present a novel two-stage network
with reflection-aware guidance (RAGNet) for single image reflection removal
(SIRR). To be specific, the reflection layer is firstly estimated due to that
it generally is much simpler and is relatively easier to estimate.
Reflectionaware guidance (RAG) module is then elaborated for better exploiting
the estimated reflection in predicting transmission layer. By incorporating
feature maps from the estimated reflection and observation, RAG can be used (i)
to mitigate the effect of reflection from the observation, and (ii) to generate
mask in partial convolution for mitigating the effect of deviating from linear
combination hypothesis. A dedicated mask loss is further presented for
reconciling the contributions of encoder and decoder features. Experiments on
five commonly used datasets demonstrate the quantitative and qualitative
superiority of our RAGNet in comparison to the state-of-the-art SIRR methods.
The source code and pre-trained model are available at
https://github.com/liyucs/RAGNet.
Related papers
- Monocular Identity-Conditioned Facial Reflectance Reconstruction [71.90507628715388]
Existing methods rely on a large amount of light-stage captured data to learn facial reflectance models.
We learn the reflectance prior in image space rather than UV space and present a framework named ID2Reflectance.
Our framework can directly estimate the reflectance maps of a single image while using limited reflectance data for training.
arXiv Detail & Related papers (2024-03-30T09:43:40Z) - Single Image Reflection Removal with Reflection Intensity Prior
Knowledge [14.335849624907611]
We propose a general reflection intensity prior that captures the intensity of the reflection phenomenon.
By segmenting images into regional patches, RPEN learns non-uniform reflection prior in an image.
We propose Prior-based Reflection Removal Network (PRRN) using a simple transformer U-Net architecture.
arXiv Detail & Related papers (2023-12-06T14:52:11Z) - Revisiting Single Image Reflection Removal In the Wild [83.42368937164473]
This research focuses on the issue of single-image reflection removal (SIRR) in real-world conditions.
We devise an advanced reflection collection pipeline that is highly adaptable to a wide range of real-world reflection scenarios.
We develop a large-scale, high-quality reflection dataset named Reflection Removal in the Wild (RRW)
arXiv Detail & Related papers (2023-11-29T02:31:10Z) - ReflectNet -- A Generative Adversarial Method for Single Image
Reflection Suppression [0.6980076213134382]
We propose a single image reflection removal method based on context understanding modules and adversarial training.
Our proposed reflection removal method outperforms state-of-the-art methods in terms of PSNR and SSIM on the SIR benchmark dataset.
arXiv Detail & Related papers (2021-05-11T17:33:40Z) - Iterative Gradient Encoding Network with Feature Co-Occurrence Loss for
Single Image Reflection Removal [6.370905925442655]
We propose an iterative gradient encoding network for single image reflection removal.
Our method can remove reflection favorably against the existing state-of-the-art method on all imaging settings.
arXiv Detail & Related papers (2021-03-29T19:29:29Z) - Location-aware Single Image Reflection Removal [54.93808224890273]
This paper proposes a novel location-aware deep learning-based single image reflection removal method.
We use a reflection confidence map as the cues for the network to learn how to encode the reflection information adaptively.
The integration of location information into the network significantly improves the quality of reflection removal results.
arXiv Detail & Related papers (2020-12-13T19:34:35Z) - Unsupervised Single-Image Reflection Separation Using Perceptual Deep
Image Priors [6.333390830515411]
We propose a novel unsupervised framework for single-image reflection separation.
We optimize the parameters of two cross-coupled deep convolutional networks on a target image to generate two exclusive background and reflection layers.
Our results show that our method significantly outperforms the closest unsupervised method in the literature for removing reflections from single images.
arXiv Detail & Related papers (2020-09-01T21:08:30Z) - Polarized Reflection Removal with Perfect Alignment in the Wild [66.48211204364142]
We present a novel formulation to removing reflection from polarized images in the wild.
We first identify the misalignment issues of existing reflection removal datasets.
We build a new dataset with more than 100 types of glass in which obtained transmission images are perfectly aligned with input mixed images.
arXiv Detail & Related papers (2020-03-28T13:29:31Z) - Single image reflection removal via learning with multi-image
constraints [50.54095311597466]
We propose a novel learning-based solution that combines the advantages of the aforementioned approaches and overcomes their drawbacks.
Our algorithm works by learning a deep neural network to optimize the target with joint constraints enhanced among multiple input images.
Our algorithm runs in real-time and state-of-the-art reflection removal performance on real images.
arXiv Detail & Related papers (2019-12-08T06:10:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.