Secure Neuroimaging Analysis using Federated Learning with Homomorphic
Encryption
- URL: http://arxiv.org/abs/2108.03437v1
- Date: Sat, 7 Aug 2021 12:15:52 GMT
- Title: Secure Neuroimaging Analysis using Federated Learning with Homomorphic
Encryption
- Authors: Dimitris Stripelis, Hamza Saleem, Tanmay Ghai, Nikhil Dhinagar, Umang
Gupta, Chrysovalantis Anastasiou, Greg Ver Steeg, Srivatsan Ravi, Muhammad
Naveed, Paul M. Thompson and Jose Luis Ambite
- Abstract summary: Federated learning (FL) enables distributed computation of machine learning models over disparate, remote data sources.
Recent membership attacks show that private or sensitive personal data can sometimes be leaked or inferred when model parameters or summary statistics are shared with a central site.
We propose a framework for secure FL using fully-homomorphic encryption (FHE)
- Score: 14.269757725951882
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Federated learning (FL) enables distributed computation of machine learning
models over various disparate, remote data sources, without requiring to
transfer any individual data to a centralized location. This results in an
improved generalizability of models and efficient scaling of computation as
more sources and larger datasets are added to the federation. Nevertheless,
recent membership attacks show that private or sensitive personal data can
sometimes be leaked or inferred when model parameters or summary statistics are
shared with a central site, requiring improved security solutions. In this
work, we propose a framework for secure FL using fully-homomorphic encryption
(FHE). Specifically, we use the CKKS construction, an approximate, floating
point compatible scheme that benefits from ciphertext packing and rescaling. In
our evaluation on large-scale brain MRI datasets, we use our proposed secure FL
framework to train a deep learning model to predict a person's age from
distributed MRI scans, a common benchmarking task, and demonstrate that there
is no degradation in the learning performance between the encrypted and
non-encrypted federated models.
Related papers
- QBI: Quantile-Based Bias Initialization for Efficient Private Data Reconstruction in Federated Learning [0.5497663232622965]
Federated learning enables the training of machine learning models on distributed data without compromising user privacy.
Recent research has shown that the central entity can perfectly reconstruct private data from shared model updates.
arXiv Detail & Related papers (2024-06-26T20:19:32Z) - EncCluster: Scalable Functional Encryption in Federated Learning through Weight Clustering and Probabilistic Filters [3.9660142560142067]
Federated Learning (FL) enables model training across decentralized devices by communicating solely local model updates to an aggregation server.
FL remains vulnerable to inference attacks during model update transmissions.
We present EncCluster, a novel method that integrates model compression through weight clustering with recent decentralized FE and privacy-enhancing data encoding.
arXiv Detail & Related papers (2024-06-13T14:16:50Z) - Federated Learning for Misbehaviour Detection with Variational Autoencoders and Gaussian Mixture Models [0.2999888908665658]
Federated Learning (FL) has become an attractive approach to collaboratively train Machine Learning (ML) models.
This work proposes a novel unsupervised FL approach for the identification of potential misbehavior in vehicular environments.
We leverage the computing capabilities of public cloud services for model aggregation purposes.
arXiv Detail & Related papers (2024-05-16T08:49:50Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
Federated learning (FL) enables distributed learning across edge devices while protecting data privacy.
We consider a FL framework with partial model pruning and personalization to overcome these challenges.
This framework splits the learning model into a global part with model pruning shared with all devices to learn data representations and a personalized part to be fine-tuned for a specific device.
arXiv Detail & Related papers (2023-09-04T21:10:45Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
Federated learning (FL) allows the collaborative training of AI models without needing to share raw data.
Recent works on the inversion of deep neural networks from model gradients raised concerns about the security of FL in preventing the leakage of training data.
In this work, we show that these attacks presented in the literature are impractical in real FL use-cases and provide a new baseline attack.
arXiv Detail & Related papers (2022-02-14T18:33:12Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
Federated Learning allows a large number of clients to train a joint model without the need to share their private data.
To ensure the confidentiality of the client updates, Federated Learning systems employ secure aggregation.
We present RoFL, a secure Federated Learning system that improves robustness against malicious clients.
arXiv Detail & Related papers (2021-07-07T15:42:49Z) - Efficient CNN Building Blocks for Encrypted Data [6.955451042536852]
Homomorphic Encryption (FHE) is a promising technique to enable machine learning and inferencing.
We show that operational parameters of the chosen FHE scheme have a major impact on the design of the machine learning model.
Our empirical study shows that choice of aforementioned design parameters result in significant trade-offs between accuracy, security level, and computational time.
arXiv Detail & Related papers (2021-01-30T21:47:23Z) - GRAFFL: Gradient-free Federated Learning of a Bayesian Generative Model [8.87104231451079]
This paper presents the first gradient-free federated learning framework called GRAFFL.
It uses implicit information derived from each participating institution to learn posterior distributions of parameters.
We propose the GRAFFL-based Bayesian mixture model to serve as a proof-of-concept of the framework.
arXiv Detail & Related papers (2020-08-29T07:19:44Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
Federated learning aims to protect data privacy by collaboratively learning a model without sharing private data among users.
An adversary may still be able to infer the private training data by attacking the released model.
Differential privacy provides a statistical protection against such attacks at the price of significantly degrading the accuracy or utility of the trained models.
arXiv Detail & Related papers (2020-05-01T04:28:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.