Do Gradient Inversion Attacks Make Federated Learning Unsafe?
- URL: http://arxiv.org/abs/2202.06924v1
- Date: Mon, 14 Feb 2022 18:33:12 GMT
- Title: Do Gradient Inversion Attacks Make Federated Learning Unsafe?
- Authors: Ali Hatamizadeh, Hongxu Yin, Pavlo Molchanov, Andriy Myronenko, Wenqi
Li, Prerna Dogra, Andrew Feng, Mona G. Flores, Jan Kautz, Daguang Xu, Holger
R. Roth
- Abstract summary: Federated learning (FL) allows the collaborative training of AI models without needing to share raw data.
Recent works on the inversion of deep neural networks from model gradients raised concerns about the security of FL in preventing the leakage of training data.
In this work, we show that these attacks presented in the literature are impractical in real FL use-cases and provide a new baseline attack.
- Score: 70.0231254112197
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) allows the collaborative training of AI models
without needing to share raw data. This capability makes it especially
interesting for healthcare applications where patient and data privacy is of
utmost concern. However, recent works on the inversion of deep neural networks
from model gradients raised concerns about the security of FL in preventing the
leakage of training data. In this work, we show that these attacks presented in
the literature are impractical in real FL use-cases and provide a new baseline
attack that works for more realistic scenarios where the clients' training
involves updating the Batch Normalization (BN) statistics. Furthermore, we
present new ways to measure and visualize potential data leakage in FL. Our
work is a step towards establishing reproducible methods of measuring data
leakage in FL and could help determine the optimal tradeoffs between
privacy-preserving techniques, such as differential privacy, and model accuracy
based on quantifiable metrics.
Related papers
- Privacy Attack in Federated Learning is Not Easy: An Experimental Study [5.065947993017158]
Federated learning (FL) is an emerging distributed machine learning paradigm proposed for privacy preservation.
Recent studies have indicated that FL cannot entirely guarantee privacy protection.
It remains uncertain whether privacy attack FL algorithms are effective in realistic federated environments.
arXiv Detail & Related papers (2024-09-28T10:06:34Z) - Ungeneralizable Examples [70.76487163068109]
Current approaches to creating unlearnable data involve incorporating small, specially designed noises.
We extend the concept of unlearnable data to conditional data learnability and introduce textbfUntextbfGeneralizable textbfExamples (UGEs)
UGEs exhibit learnability for authorized users while maintaining unlearnability for potential hackers.
arXiv Detail & Related papers (2024-04-22T09:29:14Z) - Defending against Data Poisoning Attacks in Federated Learning via User Elimination [0.0]
This paper introduces a novel framework focused on the strategic elimination of adversarial users within a federated model.
We detect anomalies in the aggregation phase of the Federated Algorithm, by integrating metadata gathered by the local training instances with Differential Privacy techniques.
Our experiments demonstrate the efficacy of our methods, significantly mitigating the risk of data poisoning while maintaining user privacy and model performance.
arXiv Detail & Related papers (2024-04-19T10:36:00Z) - Data-Agnostic Model Poisoning against Federated Learning: A Graph
Autoencoder Approach [65.2993866461477]
This paper proposes a data-agnostic, model poisoning attack on Federated Learning (FL)
The attack requires no knowledge of FL training data and achieves both effectiveness and undetectability.
Experiments show that the FL accuracy drops gradually under the proposed attack and existing defense mechanisms fail to detect it.
arXiv Detail & Related papers (2023-11-30T12:19:10Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - Reconstructing Training Data from Model Gradient, Provably [68.21082086264555]
We reconstruct the training samples from a single gradient query at a randomly chosen parameter value.
As a provable attack that reveals sensitive training data, our findings suggest potential severe threats to privacy.
arXiv Detail & Related papers (2022-12-07T15:32:22Z) - Concealing Sensitive Samples against Gradient Leakage in Federated
Learning [41.43099791763444]
Federated Learning (FL) is a distributed learning paradigm that enhances users privacy by eliminating the need for clients to share raw, private data with the server.
Recent studies expose the vulnerability of FL to model inversion attacks, where adversaries reconstruct users private data via eavesdropping on the shared gradient information.
We present a simple, yet effective defense strategy that obfuscates the gradients of the sensitive data with concealed samples.
arXiv Detail & Related papers (2022-09-13T04:19:35Z) - FL-Defender: Combating Targeted Attacks in Federated Learning [7.152674461313707]
Federated learning (FL) enables learning a global machine learning model from local data distributed among a set of participating workers.
FL is vulnerable to targeted poisoning attacks that negatively impact the integrity of the learned model.
We propose textitFL-Defender as a method to combat FL targeted attacks.
arXiv Detail & Related papers (2022-07-02T16:04:46Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z) - BEAS: Blockchain Enabled Asynchronous & Secure Federated Machine
Learning [0.0]
We present BEAS, the first blockchain-based framework for N-party Federated Learning.
It provides strict privacy guarantees of training data using gradient pruning.
Anomaly detection protocols are used to minimize the risk of data-poisoning attacks.
We also define a novel protocol to prevent premature convergence in heterogeneous learning environments.
arXiv Detail & Related papers (2022-02-06T17:11:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.