論文の概要: Context-Aware Mixup for Domain Adaptive Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2108.03557v2
- Date: Wed, 11 Aug 2021 10:59:55 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-12 10:30:57.315670
- Title: Context-Aware Mixup for Domain Adaptive Semantic Segmentation
- Title(参考訳): ドメイン適応意味セグメンテーションのためのコンテキストアウェアミックスアップ
- Authors: Qianyu Zhou, Zhengyang Feng, Qiqi Gu, Jiangmiao Pang, Guangliang
Cheng, Xuequan Lu, Jianping Shi, Lizhuang Ma
- Abstract要約: Unsupervised domain adapt (UDA) は、ラベル付きソースドメインのモデルをラベル付きターゲットドメインに適応させることを目的としている。
ドメイン適応型セマンティックセグメンテーションのためのエンド・ツー・エンドコンテキスト・アウェア・ミックスアップ(CAMix)を提案する。
実験結果から,提案手法は最先端の手法よりも高い性能を示した。
- 参考スコア(独自算出の注目度): 52.1935168534351
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised domain adaptation (UDA) aims to adapt a model of the labeled
source domain to an unlabeled target domain. Although the domain shifts may
exist in various dimensions such as appearance, textures, etc, the contextual
dependency, which is generally shared across different domains, is neglected by
recent methods. In this paper, we utilize this important clue as explicit prior
knowledge and propose end-to-end Context-Aware Mixup (CAMix) for domain
adaptive semantic segmentation. Firstly, we design a contextual mask generation
strategy by leveraging accumulated spatial distributions and contextual
relationships. The generated contextual mask is critical in this work and will
guide the domain mixup. In addition, we define the significance mask to
indicate where the pixels are credible. To alleviate the over-alignment (e.g.,
early performance degradation), the source and target significance masks are
mixed based on the contextual mask into the mixed significance mask, and we
introduce a significance-reweighted consistency loss on it. Experimental
results show that the proposed method outperforms the state-of-the-art methods
by a large margin on two widely-used domain adaptation benchmarks, i.e., GTAV
$\rightarrow $ Cityscapes and SYNTHIA $\rightarrow $ Cityscapes.
- Abstract(参考訳): Unsupervised domain adapt (UDA) は、ラベル付きソースドメインのモデルをラベル付きターゲットドメインに適応させることを目的としている。
ドメインシフトは外観やテクスチャなどさまざまな次元に存在するかもしれないが、一般的に異なるドメイン間で共有されるコンテキスト依存は、最近の手法では無視されている。
本稿では,この重要な手がかりを明示的な事前知識として活用し,ドメイン適応意味セグメンテーションのためのエンドツーエンド・コンテキスト・アウェア・ミックスアップ(camix)を提案する。
まず,蓄積した空間分布とコンテキスト関係を利用して,コンテキストマスク生成戦略を設計する。
この作業では、生成されたコンテキストマスクが重要であり、ドメインミックスアップをガイドします。
さらに,画素がどこにあるかを示すために重要マスクを定義する。
オーバーアライメント(例えば、初期の性能劣化)を緩和するために、コンテキストマスクに基づいてソース及びターゲット重要度マスクを混合重要度マスクに混合し、重み付けされた一貫性損失を導入する。
提案手法は,GTAV $\rightarrow $ Cityscapes とSynTHIA $\rightarrow $ Cityscapes の2つの領域適応ベンチマークにおいて,最先端の手法よりも高い性能を示すことを示す。
関連論文リスト
- Regularizing Self-training for Unsupervised Domain Adaptation via
Structural Constraints [14.593782939242121]
本稿では,従来の自己学習目標を正規化するために,奥行きなどの補助的モーダルから構造的手がかりを取り入れることを提案する。
具体的には、オブジェクトインスタンスの近い領域内でピクセル表現をプルする、対照的なピクセルレベルのオブジェクト性制約を導入する。
セマンティックセグメンテーションのための様々な UDA ベンチマークにおいて,正則化器は最上位の自己学習手法を大幅に改善することを示す。
論文 参考訳(メタデータ) (2023-04-29T00:12:26Z) - Unsupervised Domain Adaptation for Semantic Segmentation using One-shot
Image-to-Image Translation via Latent Representation Mixing [9.118706387430883]
超高解像度画像のセマンティックセグメンテーションのための新しい教師なし領域適応法を提案する。
潜在コンテンツ表現をドメイン間で混合するエンコーダ・デコーダの原理に基づいて,画像から画像への変換パラダイムを提案する。
都市間比較実験により,提案手法は最先端領域適応法より優れていることが示された。
論文 参考訳(メタデータ) (2022-12-07T18:16:17Z) - More Separable and Easier to Segment: A Cluster Alignment Method for
Cross-Domain Semantic Segmentation [41.81843755299211]
上記の問題を緩和するために,ドメイン仮定の近接性に基づく新しいUDAセマンティックセマンティックセマンティクス手法を提案する。
具体的には、同じ意味を持つクラスタピクセルにプロトタイプクラスタリング戦略を適用し、ターゲットドメインピクセル間の関連付けをより良く維持します。
GTA5とSynthiaで行った実験は,本法の有効性を実証した。
論文 参考訳(メタデータ) (2021-05-07T10:24:18Z) - Generalizable Representation Learning for Mixture Domain Face
Anti-Spoofing [53.82826073959756]
ドメイン一般化(DG)に基づく対スプーフィングアプローチは、予期せぬシナリオの堅牢性のために注目を集めています。
ドメインダイナミック調整メタラーニング(D2AM)についてドメインラベルを使わずに提案する。
この制限を克服するため,ドメインダイナミック調整メタラーニング(D2AM)を提案する。
論文 参考訳(メタデータ) (2021-05-06T06:04:59Z) - Pixel-Level Cycle Association: A New Perspective for Domain Adaptive
Semantic Segmentation [169.82760468633236]
本稿では,ソースとターゲットの画素ペア間の画素レベルサイクルの関連性を構築することを提案する。
我々の手法は1段階のエンドツーエンドで訓練でき、追加のパラメータは導入しない。
論文 参考訳(メタデータ) (2020-10-31T00:11:36Z) - Affinity Space Adaptation for Semantic Segmentation Across Domains [57.31113934195595]
本稿では,意味的セグメンテーションにおける教師なしドメイン適応(UDA)の問題に対処する。
ソースドメインとターゲットドメインが不変なセマンティック構造を持つという事実に触発され、ドメイン間におけるそのような不変性を活用することを提案する。
親和性空間適応戦略として,親和性空間の洗浄と親和性空間アライメントという2つの方法を開発した。
論文 参考訳(メタデータ) (2020-09-26T10:28:11Z) - Differential Treatment for Stuff and Things: A Simple Unsupervised
Domain Adaptation Method for Semantic Segmentation [105.96860932833759]
最先端のアプローチは、セマンティックレベルのアライメントの実行がドメインシフトの問題に取り組むのに役立つことを証明している。
我々は,物事領域や物事に対する異なる戦略による意味レベルのアライメントを改善することを提案する。
提案手法に加えて,提案手法は,ソースとターゲットドメイン間の最も類似した機能やインスタンス機能を最小化することにより,この問題の緩和に有効であることを示す。
論文 参考訳(メタデータ) (2020-03-18T04:43:25Z) - MADAN: Multi-source Adversarial Domain Aggregation Network for Domain
Adaptation [58.38749495295393]
ドメイン適応は、あるラベル付きソースドメインと、わずかにラベル付けまたはラベル付けされていないターゲットドメインの間のドメインシフトをブリッジするために、転送可能なモデルを学ぶことを目的としています。
近年のマルチソース領域適応法(MDA)では,ソースとターゲット間の画素レベルのアライメントは考慮されていない。
これらの課題に対処するための新しいMDAフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-19T21:22:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。