論文の概要: MAF-GNN: Multi-adaptive Spatiotemporal-flow Graph Neural Network for
Traffic Speed Forecasting
- arxiv url: http://arxiv.org/abs/2108.03594v1
- Date: Sun, 8 Aug 2021 09:06:43 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-11 07:11:32.002144
- Title: MAF-GNN: Multi-adaptive Spatiotemporal-flow Graph Neural Network for
Traffic Speed Forecasting
- Title(参考訳): MAF-GNN:交通速度予測のための多適応時空間フローグラフニューラルネットワーク
- Authors: Yaobin Xu, Weitang Liu, Zhongyi Jiang, Zixuan Xu, Tingyun Mao, Lili
Chen, Mingwei Zhou
- Abstract要約: 交通速度予測のためのマルチ適応時空間フローグラフニューラルネットワーク(MAF-GNN)を提案する。
MAF-GNNは、トラフィックノード間の複数の遅延空間依存性をキャプチャする、効果的なマルチアダプティブ・アジャシエイト・マトリクス機構を導入している。
パブリックトラフィックネットワークの2つの実世界のデータセットであるMETR-LAとPeMS-Bayでは、他のモデルよりも優れたパフォーマンスを実現している。
- 参考スコア(独自算出の注目度): 3.614768552081925
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traffic forecasting is a core element of intelligent traffic monitoring
system. Approaches based on graph neural networks have been widely used in this
task to effectively capture spatial and temporal dependencies of road networks.
However, these approaches can not effectively define the complicated network
topology. Besides, their cascade network structures have limitations in
transmitting distinct features in the time and space dimensions. In this paper,
we propose a Multi-adaptive Spatiotemporal-flow Graph Neural Network (MAF-GNN)
for traffic speed forecasting. MAF-GNN introduces an effective Multi-adaptive
Adjacency Matrices Mechanism to capture multiple latent spatial dependencies
between traffic nodes. Additionally, we propose Spatiotemporal-flow Modules
aiming to further enhance feature propagation in both time and space
dimensions. MAF-GNN achieves better performance than other models on two
real-world datasets of public traffic network, METR-LA and PeMS-Bay,
demonstrating the effectiveness of the proposed approach.
- Abstract(参考訳): トラフィック予測は、インテリジェントなトラフィック監視システムの中核要素である。
グラフニューラルネットワークに基づくアプローチは、道路網の時間的および時間的依存性を効果的に捉えるために広く利用されている。
しかし、これらのアプローチは複雑なネットワークトポロジーを効果的に定義することはできない。
さらに、それらのカスケードネットワーク構造は、時間と空間次元の異なる特徴を伝達する制限がある。
本稿では,交通速度予測のためのマルチ適応時空間フローグラフニューラルネットワーク(MAF-GNN)を提案する。
MAF-GNNは、トラフィックノード間の複数の遅延空間依存性をキャプチャする効果的なマルチアダプティブ・アジャケーシ・マトリクス機構を導入する。
さらに,時間次元と空間次元の両方における特徴伝達をさらに強化することを目的とした時空間フローモジュールを提案する。
MAF-GNNは、公共交通ネットワークの2つの実世界のデータセットであるMETR-LAとPeMS-Bayの他のモデルよりも優れた性能を実現し、提案手法の有効性を実証している。
関連論文リスト
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
本稿ではSGCN-LSTM(Signal-Enhanced Graph Convolutional Network Long Short Term Memory)モデルを提案する。
PEMS-BAYロードネットワークトラフィックデータセットの実験は、SGCN-LSTMモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-11-01T00:37:00Z) - Enhanced Traffic Flow Prediction with Multi-Segment Fusion Tensor Graph Convolutional Networks [9.44949364543965]
既存の交通流予測モデルは、交通ネットワーク内の複雑な空間的依存関係をキャプチャする際の制限に悩まされる。
本研究では,交通流予測のためのマルチセグメント融合テンソルグラフ畳み込みネットワーク(MS-FTGCN)を提案する。
2つの交通流データセットを用いた実験の結果,提案したMS-FTGCNは最先端モデルよりも優れていた。
論文 参考訳(メタデータ) (2024-08-08T05:37:17Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
本稿では,AHSTN(Adaptive Hierarchical SpatioTemporal Network)を提案する。
AHSTNは空間階層を利用し、マルチスケール空間相関をモデル化する。
2つの実世界のデータセットの実験により、AHSTNはいくつかの強いベースラインよりも優れたパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2023-06-15T14:50:27Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
空間時空間グラフニューラルネットワーク(GNN)モデルは、この問題を解決する最も有望な方法の1つである。
本稿では,交通流の正確な予測を行うために,遅延を意識した動的長距離トランスフォーマー(PDFormer)を提案する。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2023-01-19T08:42:40Z) - Adaptive Multi-receptive Field Spatial-Temporal Graph Convolutional
Network for Traffic Forecasting [0.0]
本稿では,移動基地局のトラフィック動態をモデル化するための新しいディープラーニングネットワークアーキテクチャを提案する。
4つの実世界のデータセットの実験では、AMF-STGCNは最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2021-11-01T06:47:42Z) - Learning dynamic and hierarchical traffic spatiotemporal features with
Transformer [4.506591024152763]
本稿では,空間時間グラフモデリングと長期交通予測のための新しいモデルであるTraffic Transformerを提案する。
Transformerは自然言語処理(NLP)で最も人気のあるフレームワークです。
注目重量行列を解析すれば 道路網の 影響力のある部分を見つけられる 交通網をよりよく学べる
論文 参考訳(メタデータ) (2021-04-12T02:29:58Z) - SST-GNN: Simplified Spatio-temporal Traffic forecasting model using
Graph Neural Network [2.524966118517392]
我々は,SST-GNN(SST-GNN)を簡易に設計し,異なる地区を個別に集約することで依存性を効果的に符号化した。
我々は,本モデルが3つの実環境トラフィックデータセットの最先端モデルよりも大幅に優れていることを示した。
論文 参考訳(メタデータ) (2021-03-31T18:28:44Z) - Spatio-temporal Modeling for Large-scale Vehicular Networks Using Graph
Convolutional Networks [110.80088437391379]
SMARTと呼ばれるグラフベースのフレームワークが提案され、大規模な地理的領域にわたるV2I通信遅延の統計をモデル化し、追跡する。
深層Q-networksアルゴリズムと統合したグラフ畳み込みネットワークを用いたグラフ再構築型手法を開発する。
その結果,提案手法は,モデル化の精度と効率と,大規模車両ネットワークにおける遅延性能を有意に向上させることが示された。
論文 参考訳(メタデータ) (2021-03-13T06:56:29Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
交通予測のための地理・長期時間グラフ畳み込み型ニューラルネットワーク(GLT-GCRNN)を提案する。
本研究では,地理的・長期的時間的パターンを共有する道路間のリッチな相互作用を学習する交通予測のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-23T03:50:46Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
本稿では,長期交通予測の精度を向上させるため,時空間変圧器ネットワーク(STTN)の新たなパラダイムを提案する。
具体的には、有向空間依存を動的にモデル化することにより、空間変換器と呼ばれる新しいグラフニューラルネットワークを提案する。
提案モデルにより,長期間にわたる空間的依存関係に対する高速かつスケーラブルなトレーニングが可能になる。
論文 参考訳(メタデータ) (2020-01-09T10:21:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。