論文の概要: 3D Human Reconstruction in the Wild with Collaborative Aerial Cameras
- arxiv url: http://arxiv.org/abs/2108.03936v1
- Date: Mon, 9 Aug 2021 11:03:38 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-10 15:07:44.845818
- Title: 3D Human Reconstruction in the Wild with Collaborative Aerial Cameras
- Title(参考訳): 協調型空中カメラを用いた野生の3次元再構築
- Authors: Cherie Ho, Andrew Jong, Harry Freeman, Rohan Rao, Rogerio Bonatti,
Sebastian Scherer
- Abstract要約: 本研究では,自然環境下での人体の動きを,専用マーカーを使わずに再現できるマルチカメラ制御のためのリアルタイム航空システムを提案する。
本研究では,障害物間における目標再構成品質を最適に設定するマルチロボット調整手法を開発した。
- 参考スコア(独自算出の注目度): 3.3674370488883434
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Aerial vehicles are revolutionizing applications that require capturing the
3D structure of dynamic targets in the wild, such as sports, medicine, and
entertainment. The core challenges in developing a motion-capture system that
operates in outdoors environments are: (1) 3D inference requires multiple
simultaneous viewpoints of the target, (2) occlusion caused by obstacles is
frequent when tracking moving targets, and (3) the camera and vehicle state
estimation is noisy. We present a real-time aerial system for multi-camera
control that can reconstruct human motions in natural environments without the
use of special-purpose markers. We develop a multi-robot coordination scheme
that maintains the optimal flight formation for target reconstruction quality
amongst obstacles. We provide studies evaluating system performance in
simulation, and validate real-world performance using two drones while a target
performs activities such as jogging and playing soccer. Supplementary video:
https://youtu.be/jxt91vx0cns
- Abstract(参考訳): 航空車両は、スポーツ、医療、エンターテイメントなど、野生のダイナミックなターゲットの3D構造を捉える必要があるアプリケーションに革命をもたらしている。
屋外環境で動作させるモーションキャプチャシステムを開発する上での課題は,(1)3次元推論では目標の同時視点が複数必要であり,(2)移動目標追跡時に障害物による閉塞が頻発し,(3)カメラと車両の状態推定がうるさいことである。
本稿では,汎用マーカーを使わずに自然環境下で人間の動きを再現できるマルチカメラ制御のためのリアルタイム航空システムを提案する。
障害物間における目標再構成品質を最適に設定する多ロボット調整手法を開発した。
シミュレーションにおけるシステム性能の評価と、2機のドローンによる実世界性能の検証を行い、目標がジョギングやサッカーなどの活動を行う。
補足ビデオ: https://youtu.be/jxt91vx0cns
関連論文リスト
- Dyn-HaMR: Recovering 4D Interacting Hand Motion from a Dynamic Camera [49.82535393220003]
Dyn-HaMRは、野生のダイナミックカメラで撮影されたモノクロビデオから4Dグローバルハンドモーションを再構築する最初のアプローチである。
提案手法は,4次元メッシュ・リカバリにおいて最先端の手法を著しく上回ることを示す。
これにより、動くカメラでモノクロビデオから手の動きを復元するための新しいベンチマークが確立される。
論文 参考訳(メタデータ) (2024-12-17T12:43:10Z) - Learning Camera Movement Control from Real-World Drone Videos [25.10006841389459]
既存のAIビデオ撮影手法は、シミュレーショントレーニングにおいて、外観の多様性が限られている。
実世界のトレーニングデータを収集するスケーラブルな手法を提案する。
本システムでは,カメラの動きを効果的に学習できることが示される。
論文 参考訳(メタデータ) (2024-12-12T18:59:54Z) - 3DTrajMaster: Mastering 3D Trajectory for Multi-Entity Motion in Video Generation [83.98251722144195]
制御可能なビデオ生成における従来の方法は、主に物体の動きを操作するために2D制御信号を利用する。
本稿では3次元空間におけるマルチエンタリティダイナミクスを制御する頑健なコントローラである3DTrajMasterを紹介する。
3DTrajMasterは,多心性3D動作を制御するための精度と一般化の両面において,新しい最先端技術を設定する。
論文 参考訳(メタデータ) (2024-12-10T18:55:13Z) - A Cross-Scene Benchmark for Open-World Drone Active Tracking [54.235808061746525]
Drone Visual Active Trackingは、視覚的な観察に基づいてモーションシステムを制御することで、対象物を自律的に追跡することを目的としている。
DATと呼ばれるオープンワールドドローンアクティブトラッキングのためのクロスシーンクロスドメインベンチマークを提案する。
また、R-VATと呼ばれる強化学習に基づくドローン追跡手法を提案する。
論文 参考訳(メタデータ) (2024-12-01T09:37:46Z) - Towards Live 3D Reconstruction from Wearable Video: An Evaluation of
V-SLAM, NeRF, and Videogrammetry Techniques [20.514826446476267]
MR(Mixed Reality)は、戦争の未来を変えることを約束する重要な技術である。
この技術を実現するためには,実動センサ観測に基づいて物理的環境の大規模3次元モデルを維持する必要がある。
実写映像のみを用いた大規模軍用地図作成のための3次元再構成アルゴリズムについて検討した。
論文 参考訳(メタデータ) (2022-11-21T19:57:51Z) - Aerial Monocular 3D Object Detection [67.20369963664314]
DVDETは2次元画像空間と3次元物理空間の両方で空中単分子3次元物体検出を実現するために提案される。
高度視差変形問題に対処するため,新しい測地変形変換モジュールを提案する。
より多くの研究者がこの領域を調査するよう促すため、データセットと関連するコードをリリースします。
論文 参考訳(メタデータ) (2022-08-08T08:32:56Z) - MoCaNet: Motion Retargeting in-the-wild via Canonicalization Networks [77.56526918859345]
そこで本研究では,制御された環境から3次元動作タスクを実現する新しいフレームワークを提案する。
モーションキャプチャシステムや3D再構成手順を使わずに、2Dモノクロ映像のキャラクタから3Dキャラクタへの体動を可能にする。
論文 参考訳(メタデータ) (2021-12-19T07:52:05Z) - GLAMR: Global Occlusion-Aware Human Mesh Recovery with Dynamic Cameras [99.07219478953982]
ダイナミックカメラで記録したモノクロビデオから3次元グローバルなヒューマンメッシュリカバリのためのアプローチを提案する。
われわれはまず,視覚的動作に基づいて隠蔽されたヒトの身体運動を自己回帰的に埋め込む,深部再生運動充填装置を提案する。
従来の研究とは対照的に,我々の手法はダイナミックカメラを用いても,一貫したグローバル座標で人間のメッシュを再構築する。
論文 参考訳(メタデータ) (2021-12-02T18:59:54Z) - Do You See What I See? Coordinating Multiple Aerial Cameras for Robot
Cinematography [9.870369982132678]
ショットの多様性を最大化し、衝突を回避しつつ、ダイナミックな目標を記録できるリアルタイムマルチUAVコーディネートシステムを開発した。
我々の調整方式は計算コストが低く、平均1.17ミリ秒で10秒の時間帯で3UAVのチームを計画できることが示される。
論文 参考訳(メタデータ) (2020-11-10T22:43:25Z) - Reconstruction of 3D flight trajectories from ad-hoc camera networks [19.96488566402593]
本研究では,空飛ぶロボットシステムの3次元軌道を,同期しないカメラで撮影した映像から再構成する手法を提案する。
我々のアプローチは、安価で容易に配備できる装置を用いて、動的に飛来する目標の堅牢かつ正確な外部からの追跡を可能にする。
論文 参考訳(メタデータ) (2020-03-10T14:57:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。