論文の概要: Dynamic Multi-Scale Loss Optimization for Object Detection
- arxiv url: http://arxiv.org/abs/2108.04014v1
- Date: Mon, 9 Aug 2021 13:12:41 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-10 15:17:57.163480
- Title: Dynamic Multi-Scale Loss Optimization for Object Detection
- Title(参考訳): オブジェクト検出のための動的マルチスケール損失最適化
- Authors: Yihao Luo, Xiang Cao, Juntao Zhang, Peng Cheng, Tianjiang Wang and Qi
Feng
- Abstract要約: マルチスケール検出器訓練の客観的不均衡について検討する。
本稿では, 適応可変重み付け (AVW) を提案する。
トレーニング中に重み付け方式を確率的に決定する新しい強化学習最適化(RLO)を開発した。
- 参考スコア(独自算出の注目度): 14.256807110937622
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the continuous improvement of the performance of object detectors via
advanced model architectures, imbalance problems in the training process have
received more attention. It is a common paradigm in object detection frameworks
to perform multi-scale detection. However, each scale is treated equally during
training. In this paper, we carefully study the objective imbalance of
multi-scale detector training. We argue that the loss in each scale level is
neither equally important nor independent. Different from the existing
solutions of setting multi-task weights, we dynamically optimize the loss
weight of each scale level in the training process. Specifically, we propose an
Adaptive Variance Weighting (AVW) to balance multi-scale loss according to the
statistical variance. Then we develop a novel Reinforcement Learning
Optimization (RLO) to decide the weighting scheme probabilistically during
training. The proposed dynamic methods make better utilization of multi-scale
training loss without extra computational complexity and learnable parameters
for backpropagation. Experiments show that our approaches can consistently
boost the performance over various baseline detectors on Pascal VOC and MS COCO
benchmark.
- Abstract(参考訳): 高度なモデルアーキテクチャによる物体検出性能の継続的な向上により、トレーニングプロセスにおける不均衡問題に注目が集まっている。
オブジェクト検出フレームワークでは、マルチスケール検出を行うための共通のパラダイムである。
しかし、各スケールはトレーニング中に等しく扱われる。
本稿では,マルチスケール検出器訓練の客観的不均衡を慎重に検討する。
各スケールレベルの損失は等しく重要でも独立でもないと我々は主張する。
マルチタスク重み設定の既存のソリューションとは異なり、トレーニングプロセスにおける各スケールレベルの損失重量を動的に最適化する。
具体的には, 適応可変重み付け (AVW) を提案し, 統計的分散に応じて多スケール損失のバランスをとる。
そして,学習中の重み付けスキームを確率的に決定する新しい強化学習最適化(rlo)を開発した。
提案する動的手法は,計算量や学習可能なパラメータを必要とせず,マルチスケールの学習損失をより有効活用する。
実験により,Pascal VOC および MS COCO ベンチマークにおける各種ベースライン検出器の性能を継続的に向上できることが示された。
関連論文リスト
- Towards Efficient Pareto Set Approximation via Mixture of Experts Based Model Fusion [53.33473557562837]
大規模深層ニューラルネットワークに対する多目的最適化問題を解くことは、損失ランドスケープの複雑さと高価な計算コストのために難しい課題である。
本稿では,専門家(MoE)をベースとしたモデル融合を用いて,この問題を実用的でスケーラブルに解決する手法を提案する。
特殊な単一タスクモデルの重みをまとめることで、MoEモジュールは複数の目的間のトレードオフを効果的に捉えることができる。
論文 参考訳(メタデータ) (2024-06-14T07:16:18Z) - Symmetric Reinforcement Learning Loss for Robust Learning on Diverse Tasks and Model Scales [13.818149654692863]
強化学習(RL)トレーニングは、移動目標や高勾配分散などの要因により本質的に不安定である。
本研究では,雑音データに対する教師付き学習から逆クロスエントロピー(RCE)を適用し,対称的なRL損失を定義することにより,RLトレーニングの安定性を向上させる。
論文 参考訳(メタデータ) (2024-05-27T19:28:33Z) - Scalarization for Multi-Task and Multi-Domain Learning at Scale [15.545810422759295]
複数の入力ドメインと/または出力タスクで単一のモデルをトレーニングすることで、複数のソースからの情報を統一されたバックボーンに圧縮することができる。
しかし、これらのネットワークの最適化は、異なるタスクやドメイン間の相違による課題である。
論文 参考訳(メタデータ) (2023-10-13T07:31:04Z) - Three-Way Trade-Off in Multi-Objective Learning: Optimization,
Generalization and Conflict-Avoidance [47.42067405054353]
MOL(Multi-objective Learning)は、機械学習の新興問題においてしばしば発生する問題である。
MOLにおける重要な課題の1つは、反復最適化プロセスにおける異なる目的間の潜在的な衝突である。
近年,MGDAやその変種など,MOLの動的重み付けアルゴリズムが開発されている。
論文 参考訳(メタデータ) (2023-05-31T17:31:56Z) - Unifying Synergies between Self-supervised Learning and Dynamic
Computation [53.66628188936682]
SSLとDCのパラダイム間の相互作用に関する新しい視点を提示する。
SSL設定において、スクラッチから高密度かつゲートされたサブネットワークを同時に学習することは可能であることを示す。
密集エンコーダとゲートエンコーダの事前学習における共進化は、良好な精度と効率のトレードオフをもたらす。
論文 参考訳(メタデータ) (2023-01-22T17:12:58Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
現代のディープニューラルネットワークは、破損したラベルやクラス不均衡を含むバイアス付きトレーニングデータに容易に適合する。
サンプル再重み付け手法は、このデータバイアス問題を緩和するために一般的に使用されている。
本稿では,データから直接明示的な重み付け方式を適応的に学習できるメタモデルを提案する。
論文 参考訳(メタデータ) (2022-02-11T13:49:51Z) - Multi-Task Meta-Learning Modification with Stochastic Approximation [0.7734726150561089]
数ショットの学習問題は、メタ学習アルゴリズムの主要なベンチマークの1つである。
本稿では、トレーニング中にマルチタスクアプローチをとる標準的なメタ学習パイプラインの修正について検討する。
提案手法は,共通損失関数における複数のメタ学習タスクの情報の同時利用を行う。
これらの重みの適切な最適化は、モデル全体のトレーニングに大きな影響を与え、テスト時間タスクの品質を改善する可能性がある。
論文 参考訳(メタデータ) (2021-10-25T18:11:49Z) - Towards Balanced Learning for Instance Recognition [149.76724446376977]
本稿では,インスタンス認識のためのバランス学習のためのフレームワークであるLibra R-CNNを提案する。
IoUバランスのサンプリング、バランスの取れた特徴ピラミッド、客観的再重み付けをそれぞれ統合し、サンプル、特徴、客観的レベルの不均衡を低減します。
論文 参考訳(メタデータ) (2021-08-23T13:40:45Z) - Ada-Segment: Automated Multi-loss Adaptation for Panoptic Segmentation [95.31590177308482]
我々は,トレーニング期間中に複数のトレーニング損失を柔軟に調整する自動マルチロス適応(ada-segment)を提案する。
エンドツーエンドアーキテクチャにより、ada-segmentはハイパーパラメータを再チューニングすることなく、異なるデータセットに一般化する。
Ada-Segmentは、バニラベースラインからCOCOval分割に2.7%のパノラマ品質(PQ)改善をもたらし、COCOテストデブ分割に最新の48.5%PQ、ADE20Kデータセットに32.9%PQを達成しました。
論文 参考訳(メタデータ) (2020-12-07T11:43:10Z) - Multi-Loss Weighting with Coefficient of Variations [19.37721431024278]
本稿では,変動係数に基づく重み付け手法を提案し,モデルのトレーニング中に観測された特性に基づいて重みを設定する。
提案手法は損失のバランスをとるための不確実性の尺度を組み込んでおり、その結果、他の(学習ベース)最適化を必要とせずに、トレーニング中に損失重みが進化する。
提案手法の有効性は,複数のデータセット上での深度推定とセマンティックセグメンテーションに実証的に示される。
論文 参考訳(メタデータ) (2020-09-03T14:51:19Z) - Dynamic Scale Training for Object Detection [111.33112051962514]
本稿では,オブジェクト検出におけるスケール変動問題を軽減するために,動的スケールトレーニングパラダイム(DST)を提案する。
提案したDSTのスケール変動処理に対する有効性を示す実験結果を得た。
推論オーバーヘッドを導入せず、一般的な検出設定のための無料ランチとして機能する。
論文 参考訳(メタデータ) (2020-04-26T16:48:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。