論文の概要: Deep Learning methods for automatic evaluation of delayed
enhancement-MRI. The results of the EMIDEC challenge
- arxiv url: http://arxiv.org/abs/2108.04016v1
- Date: Mon, 9 Aug 2021 13:15:25 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-10 15:17:41.679783
- Title: Deep Learning methods for automatic evaluation of delayed
enhancement-MRI. The results of the EMIDEC challenge
- Title(参考訳): 遅延強調mriの自動評価のためのディープラーニング法
EMIDECチャレンジの結果
- Authors: Alain Lalande, Zhihao Chen, Thibaut Pommier, Thomas Decourselle, Abdul
Qayyum, Michel Salomon, Dominique Ginhac, Youssef Skandarani, Arnaud Boucher,
Khawla Brahim, Marleen de Bruijne, Robin Camarasa, Teresa M. Correia, Xue
Feng, Kibrom B. Girum, Anja Hennemuth, Markus Huellebrand, Raabid Hussain,
Matthias Ivantsits, Jun Ma, Craig Meyer, Rishabh Sharma, Jixi Shi, Nikolaos
V. Tsekos, Marta Varela, Xiyue Wang, Sen Yang, Hannu Zhang, Yichi Zhang,
Yuncheng Zhou, Xiahai Zhuang, Raphael Couturier, Fabrice Meriaudeau
- Abstract要約: EMIDECの課題は, 深層学習法が正常症例と病理症例とを区別できるかどうかを評価することである。
造影剤投与後, 正常MRI50例, 心筋梗塞100例に分けて検討した。
その結果,試験の自動分類は到達可能な課題であることが示唆された。
- 参考スコア(独自算出の注目度): 21.93792387878765
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: A key factor for assessing the state of the heart after myocardial infarction
(MI) is to measure whether the myocardium segment is viable after reperfusion
or revascularization therapy. Delayed enhancement-MRI or DE-MRI, which is
performed several minutes after injection of the contrast agent, provides high
contrast between viable and nonviable myocardium and is therefore a method of
choice to evaluate the extent of MI. To automatically assess myocardial status,
the results of the EMIDEC challenge that focused on this task are presented in
this paper. The challenge's main objectives were twofold. First, to evaluate if
deep learning methods can distinguish between normal and pathological cases.
Second, to automatically calculate the extent of myocardial infarction. The
publicly available database consists of 150 exams divided into 50 cases with
normal MRI after injection of a contrast agent and 100 cases with myocardial
infarction (and then with a hyperenhanced area on DE-MRI), whatever their
inclusion in the cardiac emergency department. Along with MRI, clinical
characteristics are also provided. The obtained results issued from several
works show that the automatic classification of an exam is a reachable task
(the best method providing an accuracy of 0.92), and the automatic segmentation
of the myocardium is possible. However, the segmentation of the diseased area
needs to be improved, mainly due to the small size of these areas and the lack
of contrast with the surrounding structures.
- Abstract(参考訳): 心筋梗塞(MI)後の心臓状態を評価する重要な要因は、再灌流または再血管形成療法後に心筋セグメントが有効かどうかを測定することである。
造影剤を投与した数分後に行われる遅延造影MRI(de-MRI)は、生存可能な心筋と非生存可能な心筋との間に高いコントラストを与え、MIの程度を評価する方法である。
本論文では, 心筋状態を自動的に評価するために, 本課題に焦点をあてたEMIDECチャレンジの結果について述べる。
挑戦の主な目的は2つだった。
まず,深層学習法が正常症例と病理症例を区別できるかどうかを評価する。
第2に、心筋梗塞の程度を自動的に計算する。
公開されているデータベースは、コントラスト剤を注射した後の正常MRI50例と、心筋梗塞100例(そして、D-MRIのハイパーエンハンス領域を含む)に分けて構成される。
MRIとともに臨床的特徴も提供される。
いくつかの研究から得られた結果から、試験の自動分類は到達可能なタスク(精度0.92の最良の方法)であり、心筋の自動分割が可能であることが示されている。
しかし, 地域規模が小さかったり, 周辺構造とのコントラストの欠如などにより, 疾患領域のセグメンテーションは改善される必要がある。
関連論文リスト
- Multi-Source and Multi-Sequence Myocardial Pathology Segmentation Using a Cascading Refinement CNN [0.49923266458151416]
心筋組織の生存性を評価するために, セマンティックセグメンテーションを生成するMulti-Sequence Cascading Refinement CNN(MS-CaRe-CNN)を提案する。
MS-CaRe-CNNは、心筋組織の生存可能性を評価するためにセマンティックセグメンテーションを生成するのに適している。
論文 参考訳(メタデータ) (2024-09-19T14:01:15Z) - Ensemble Learning of Myocardial Displacements for Myocardial Infarction
Detection in Echocardiography [15.153823114115307]
心筋梗塞の早期発見と局所化は、心臓損傷の重症度を低下させる可能性がある。
深層学習技術は心エコー画像におけるMI検出の可能性を示唆している。
本研究は,複数のセグメンテーションモデルの特徴を組み合わせ,MI分類性能を向上させるロバストな手法を提案する。
論文 参考訳(メタデータ) (2023-03-12T20:16:14Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
磁気共鳴脳画像における運動アーチファクトは重要な問題である。
MR画像の画質評価は,臨床診断に先立って基本的である。
構造類似度指数(SSIM)回帰に基づく自動画像品質評価法が提案されている。
論文 参考訳(メタデータ) (2022-06-14T10:16:54Z) - MyoPS: A Benchmark of Myocardial Pathology Segmentation Combining
Three-Sequence Cardiac Magnetic Resonance Images [84.02849948202116]
本研究は,MyoPS(MyoPS)の医療画像解析における新たな課題を定義するものである。
myoPSは、MICCAI 2020とともにMyoPSチャレンジで最初に提案された3シーケンスの心臓磁気共鳴(CMR)画像を組み合わせている。
この課題は45対のCMR画像と予め整列されたCMR画像を提供し、アルゴリズムは3つのCMRシーケンスから補完的な情報を結合して病理領域を分割することを可能にする。
論文 参考訳(メタデータ) (2022-01-10T06:37:23Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
側方循環は、血流を妥協した領域に酸素を供給する特殊な無酸素流路から生じる。
実際のグレーティングは主に、取得した画像の手動検査によって行われる。
MR灌流データから抽出した放射線学的特徴に基づいて,脳卒中患者の側方血流低下を予測するための深層学習手法を提案する。
論文 参考訳(メタデータ) (2021-10-24T18:58:40Z) - Cascaded Framework for Automatic Evaluation of Myocardial Infarction
from Delayed-Enhancement Cardiac MRI [9.247774141419134]
まず、2D U-Netを使用して、左心室と心筋を含む心臓全体を分割します。
新しい2D U-Netを使用して、心臓全体のROIの屈折および無リフロー領域をセグメント化します。
本手法は,MICCAI 2020 EMIDECセグメンテーションタスクにおいて,Diceスコアが86.28%,62.24%,77.76%,心筋,非血流領域が77.76%,精度92%で第1位であった。
論文 参考訳(メタデータ) (2020-12-29T01:35:02Z) - Automatic Myocardial Infarction Evaluation from Delayed-Enhancement
Cardiac MRI using Deep Convolutional Networks [8.544381926074971]
臨床情報と遅延造影MRI(DE-MRI)による心筋梗塞自動評価のための新しいディープラーニングフレームワークを提案する。
2つのセグメンテーションニューラルネットワークを用いており、第1のネットワークは心筋や左室腔などの解剖学的構造をセグメンテーションするために使用される。
第2の課題は、ある症例をD-MRIの有無にかかわらず、臨床情報から正常または病理学的に自動的に分類することである。
論文 参考訳(メタデータ) (2020-10-30T11:18:25Z) - Multiple Sclerosis Lesion Activity Segmentation with Attention-Guided
Two-Path CNNs [49.32653090178743]
畳み込みニューラルネットワーク(CNN)は2つの時点から病変活動のセグメンテーションについて研究されている。
CNNは、異なる方法で2つのポイントからの情報を組み合わせて設計され、評価される。
深層学習に基づく手法が古典的アプローチより優れていることが実証された。
論文 参考訳(メタデータ) (2020-08-05T08:49:20Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
本研究の目的は,LGE-MRIを用いた心筋境界領域の深部学習モデルに基づく正確な自動セグメンテーション法を開発することである。
合計320回の試験(平均6回の試験)と28回の試験が行われた。
ベーススライスとミドルスライスにおけるアンサンブルモデルの性能解析は, サーバ内調査と同等であり, アトピーススライスではわずかに低かった。
論文 参考訳(メタデータ) (2020-05-27T20:44:38Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
現在世界最大の心臓LGE-MRIデータセットである154個の3D LGE-MRIを用いた「2018 left Atrium Challenge」。
技術および生物学的指標を用いた提案アルゴリズムの解析を行った。
その結果, 最上部法は93.2%, 平均表面は0.7mmであった。
論文 参考訳(メタデータ) (2020-04-26T08:49:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。