論文の概要: Development and evaluation of intraoperative ultrasound segmentation
with negative image frames and multiple observer labels
- arxiv url: http://arxiv.org/abs/2108.04114v1
- Date: Wed, 28 Jul 2021 12:15:49 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-15 11:31:52.877959
- Title: Development and evaluation of intraoperative ultrasound segmentation
with negative image frames and multiple observer labels
- Title(参考訳): 陰性画像フレームと複数オブザーバラベルを用いた術中超音波セグメンテーションの開発と評価
- Authors: Liam F Chalcroft, Jiongqi Qu, Sophie A Martin, Iani JMB Gayo, Giulio V
Minore, Imraj RD Singh, Shaheer U Saeed, Qianye Yang, Zachary MC Baum, Andre
Altmann, Yipeng Hu
- Abstract要約: セグメンテーションネットワークに先立って,プレスクリーン分類ネットワークの有用性を評価する。
従来提案されていたランダムサンプリングとコンセンサスラベルを組み合わせたアプローチは,本アプリケーションでよく機能するために適応する必要がある可能性があることを実験的に示す。
- 参考スコア(独自算出の注目度): 0.17159130619349347
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When developing deep neural networks for segmenting intraoperative ultrasound
images, several practical issues are encountered frequently, such as the
presence of ultrasound frames that do not contain regions of interest and the
high variance in ground-truth labels. In this study, we evaluate the utility of
a pre-screening classification network prior to the segmentation network.
Experimental results demonstrate that such a classifier, minimising frame
classification errors, was able to directly impact the number of false positive
and false negative frames. Importantly, the segmentation accuracy on the
classifier-selected frames, that would be segmented, remains comparable to or
better than those from standalone segmentation networks. Interestingly, the
efficacy of the pre-screening classifier was affected by the sampling methods
for training labels from multiple observers, a seemingly independent problem.
We show experimentally that a previously proposed approach, combining random
sampling and consensus labels, may need to be adapted to perform well in our
application. Furthermore, this work aims to share practical experience in
developing a machine learning application that assists highly variable
interventional imaging for prostate cancer patients, to present robust and
reproducible open-source implementations, and to report a set of comprehensive
results and analysis comparing these practical, yet important, options in a
real-world clinical application.
- Abstract(参考訳): 術中超音波画像のセグメンテーションのためのディープニューラルネットワークを開発する際,興味のある領域を含まない超音波フレームの存在や,接地ラベルのばらつきなど,いくつかの実用的な課題が頻繁に発生する。
本研究では,セグメンテーションネットワークに先立って,事前スクリーニング分類ネットワークの有用性を評価する。
実験結果から, フレーム分類誤差を最小限に抑えたそのような分類器は, 偽陽性および偽陰性フレームの数に直接影響を及ぼすことができた。
重要なことは、分類器選択されたフレーム上のセグメンテーション精度は、独立したセグメンテーションネットワークのものと同等かそれ以上である。
スクリーニング前分類器の有効性は,複数の観察者からラベルを抽出するサンプリング手法の影響を受けており,これは一見独立した問題である。
従来提案されていたランダムサンプリングとコンセンサスラベルを組み合わせたアプローチは,本アプリケーションでよく機能するために適応する必要がある可能性があることを実験的に示す。
さらに, 前立腺癌患者に対する高度に可変な介入型画像作成を支援する機械学習アプリケーションの開発, 堅牢かつ再現可能なオープンソース実装の提示, 実世界臨床応用におけるこれらの実用的かつ重要な選択肢の比較, 総合的な結果と分析のセットを報告し, 実践的経験を共有することを目的とした。
関連論文リスト
- SPA: Efficient User-Preference Alignment against Uncertainty in Medical Image Segmentation [8.34233304138989]
textbfSPAは、人間との相互作用が最小限である様々なテストタイムの好みに効率的に適応する。
好みのセグメンテーションに達すると、臨床の作業量を減らす。
1) 既存の対話的セグメンテーションアプローチと比較して, 臨床時間と労力の大幅な削減が示されている。
論文 参考訳(メタデータ) (2024-11-23T10:27:08Z) - Explanations of Classifiers Enhance Medical Image Segmentation via
End-to-end Pre-training [37.11542605885003]
医用画像セグメンテーションは、ディープニューラルネットワークを用いて、胸部X線写真などの医用画像の異常な構造を特定し、発見することを目的としている。
我々の研究は、よく訓練された分類器から説明を集め、セグメンテーションタスクの擬似ラベルを生成する。
次に、インテグレート・グラディエント(IG)法を用いて、分類器から得られた説明を蒸留し、強化し、大規模診断指向のローカライゼーション・ラベル(DoLL)を生成する。
これらのDLLアノテーション付き画像は、新型コロナウイルス感染症、肺、心臓、鎖骨などの下流のセグメンテーションタスクのために、モデルを微調整する前に事前訓練するために使用される。
論文 参考訳(メタデータ) (2024-01-16T16:18:42Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
少ないラベル付きデータでよく一般化する皮膚病変に対する数発のショットベースアプローチを提案する。
提案手法は,アテンションモジュールや分類ネットワークとして機能するセグメンテーションネットワークの融合を含む。
論文 参考訳(メタデータ) (2023-10-11T05:49:47Z) - Cross-supervised Dual Classifiers for Semi-supervised Medical Image
Segmentation [10.18427897663732]
半教師付き医用画像分割は、大規模医用画像解析に有望な解決策を提供する。
本稿では、二重分類器(DC-Net)に基づくクロス教師あり学習フレームワークを提案する。
LAとPancreas-CTデータセットの実験は、DC-Netが半教師付きセグメンテーションの他の最先端手法よりも優れていることを示している。
論文 参考訳(メタデータ) (2023-05-25T16:23:39Z) - Multi-Modal Evaluation Approach for Medical Image Segmentation [4.989480853499916]
本稿では,異なるセグメンテーション手法の有効性を評価するために,新しいマルチモーダル評価(MME)手法を提案する。
本稿では, 検出特性, 境界アライメント, 均一性, 総体積, 相対体積など, 関連性, 解釈可能な新しい特徴を紹介する。
提案するアプローチはオープンソースで,使用することができる。
論文 参考訳(メタデータ) (2023-02-08T15:31:33Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
医用画像セグメンテーションのための階層化グループ理論を用いた半教師付きコントラスト学習フレームワークARCOを提案する。
まず、分散還元推定の概念を用いてARCOを構築することを提案し、特定の分散還元技術が画素/ボクセルレベルのセグメンテーションタスクにおいて特に有用であることを示す。
5つの2D/3D医療データセットと3つのセマンティックセグメンテーションデータセットのラベル設定が異なる8つのベンチマークで、我々のアプローチを実験的に検証する。
論文 参考訳(メタデータ) (2023-02-03T13:50:25Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Generative Adversarial Networks for Weakly Supervised Generation and Evaluation of Brain Tumor Segmentations on MR Images [0.0]
本研究は2次元磁気共鳴画像におけるセグメント異常に対する弱教師付きアプローチを示す。
我々は,癌画像を健全な変種に変換するGAN(Generative Adversarial Network)を訓練する。
非共役な変種は、弱監督的な方法で分割を評価するためにも用いられる。
論文 参考訳(メタデータ) (2022-11-10T00:04:46Z) - Cascaded Robust Learning at Imperfect Labels for Chest X-ray
Segmentation [61.09321488002978]
不完全アノテーションを用いた胸部X線分割のための新しいカスケードロバスト学習フレームワークを提案する。
モデルは3つの独立したネットワークから成り,ピアネットワークから有用な情報を効果的に学習できる。
提案手法は,従来の手法と比較して,セグメント化タスクの精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2021-04-05T15:50:16Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Robust Medical Instrument Segmentation Challenge 2019 [56.148440125599905]
腹腔鏡装置の術中追跡は、しばしばコンピュータとロボットによる介入の必要条件である。
本研究の課題は,30の手術症例から取得した10,040枚の注釈画像からなる外科的データセットに基づいていた。
結果は、初期仮説、すなわち、アルゴリズムの性能がドメインギャップの増大とともに低下することを確認する。
論文 参考訳(メタデータ) (2020-03-23T14:35:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。