論文の概要: Workshop on Autonomous Driving at CVPR 2021: Technical Report for
Streaming Perception Challenge
- arxiv url: http://arxiv.org/abs/2108.04230v1
- Date: Tue, 27 Jul 2021 06:36:06 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-15 14:51:16.173394
- Title: Workshop on Autonomous Driving at CVPR 2021: Technical Report for
Streaming Perception Challenge
- Title(参考訳): CVPR 2021の自律運転ワークショップ:ストリーミングパーセプションチャレンジの技術的報告
- Authors: Songyang Zhang and Lin Song and Songtao Liu and Zheng Ge and Zeming Li
and Xuming He and Jian Sun
- Abstract要約: 本稿では,現実的な自律運転シナリオのためのリアルタイム2次元物体検出システムについて紹介する。
私たちの検出器は、YOLOXと呼ばれる新しい設計のYOLOモデルで構築されています。
Argoverse-HDデータセットでは,検出のみのトラック/トラックで2位を7.8/6.1上回る41.0ストリーミングAPを達成した。
- 参考スコア(独自算出の注目度): 57.647371468876116
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this report, we introduce our real-time 2D object detection system for the
realistic autonomous driving scenario. Our detector is built on a newly
designed YOLO model, called YOLOX. On the Argoverse-HD dataset, our system
achieves 41.0 streaming AP, which surpassed second place by 7.8/6.1 on
detection-only track/fully track, respectively. Moreover, equipped with
TensorRT, our model achieves the 30FPS inference speed with a high-resolution
input size (e.g., 1440-2304). Code and models will be available at
https://github.com/Megvii-BaseDetection/YOLOX
- Abstract(参考訳): 本稿では,現実的な自律運転シナリオのためのリアルタイム2次元物体検出システムについて紹介する。
我々の検出器はYOLOXと呼ばれる新しい設計のYOLOモデルで構築されている。
Argoverse-HDデータセットでは,検出のみのトラック/トラックで2位を7.8/6.1上回る41.0ストリーミングAPを達成した。
さらに,TensorRTを用いて高解像度の入力サイズ(例えば1440-2304)で30FPSの推論速度を達成する。
コードとモデルはhttps://github.com/Megvii-BaseDetection/YOLOXで入手できる。
関連論文リスト
- YOLO-Vehicle-Pro: A Cloud-Edge Collaborative Framework for Object Detection in Autonomous Driving under Adverse Weather Conditions [8.820126303110545]
本稿では, YOLO-VehicleとYOLO-Vehicle-Proの2つの革新的なディープラーニングモデルを提案する。
YOLO-Vehicleは、自動運転シナリオに特化したオブジェクト検出モデルである。
YOLO-Vehicle-Proはこの基盤の上に構築されており、改良されたイメージデハージングアルゴリズムを導入している。
論文 参考訳(メタデータ) (2024-10-23T10:07:13Z) - An Effective Two-stage Training Paradigm Detector for Small Dataset [13.227589864946477]
YOLOv8のバックボーンはマスク画像モデリング技術を用いてエンコーダとして事前訓練されている。
テスト段階では、各モデルを強化するためにテスト時間拡張(TTA)が使用され、さらに性能を高めるために重み付きボックス融合(WBF)が実装される。
良く設計された構造で、私たちのアプローチはDelftBikesテストセットで0.50から0.95までの平均精度を30.4%達成し、リーダーボードで4位になった。
論文 参考訳(メタデータ) (2023-09-11T17:43:11Z) - Real-Time Flying Object Detection with YOLOv8 [0.0]
本稿では,飛行物体のリアルタイム検出のための一般化モデルを提案する。
また,フライング物体検出のための最先端結果を得るための改良されたモデルを提案する。
論文 参考訳(メタデータ) (2023-05-17T06:11:10Z) - DeepAccident: A Motion and Accident Prediction Benchmark for V2X
Autonomous Driving [76.29141888408265]
本研究では,現実の運転において頻繁に発生する多様な事故シナリオを含む大規模データセットを提案する。
提案したDeepAccidentデータセットには57Kの注釈付きフレームと285Kの注釈付きサンプルが含まれており、これは大規模なnuScenesデータセットの約7倍である。
論文 参考訳(メタデータ) (2023-04-03T17:37:00Z) - Optimizing Anchor-based Detectors for Autonomous Driving Scenes [22.946814647030667]
本稿では、自律走行シーンにおける一般的なアンカーベース検出器のモデル改善と推定時間最適化について要約する。
高性能RCNN-RSおよびRetinaNet-RS検出フレームワークに基づいて,群衆シーンの小さな物体をよりよく検出するために,検出器に適応するための一連のフレームワークの改善について検討した。
論文 参考訳(メタデータ) (2022-08-11T22:44:59Z) - StreamYOLO: Real-time Object Detection for Streaming Perception [84.2559631820007]
将来を予測する能力を備えたモデルを提供し、ストリーミング知覚の結果を大幅に改善する。
本稿では,複数の速度を駆動するシーンについて考察し,VasAP(Velocity-Awared streaming AP)を提案する。
本手法は,Argoverse-HDデータセットの最先端性能を実現し,SAPとVsAPをそれぞれ4.7%,VsAPを8.2%改善する。
論文 参考訳(メタデータ) (2022-07-21T12:03:02Z) - Real-time Object Detection for Streaming Perception [84.2559631820007]
ストリーミング知覚は,ビデオオンライン知覚の1つの指標として,レイテンシと精度を共同評価するために提案される。
ストリーミング知覚のためのシンプルで効果的なフレームワークを構築します。
提案手法はArgoverse-HDデータセット上での競合性能を実現し,強力なベースラインに比べてAPを4.9%向上させる。
論文 参考訳(メタデータ) (2022-03-23T11:33:27Z) - SODA10M: Towards Large-Scale Object Detection Benchmark for Autonomous
Driving [94.11868795445798]
我々は,SODA10Mという名の自律走行用大規模物体検出ベンチマークをリリースし,1000万枚の未ラベル画像と6つの代表対象カテゴリをラベル付けした20K画像を含む。
多様性を向上させるために、画像は32の異なる都市で、1フレームあたり10秒毎に異なる気象条件、期間、場所のシーンで収集される。
我々は、既存の教師付き最先端検出モデル、一般的な自己監督型および半教師付きアプローチ、および将来のモデルの開発方法に関するいくつかの知見について、広範な実験と詳細な分析を行った。
論文 参考訳(メタデータ) (2021-06-21T13:55:57Z) - Two-Stream Consensus Network: Submission to HACS Challenge 2021
Weakly-Supervised Learning Track [78.64815984927425]
弱い監督による時間的行動ローカライゼーションの目標は、ビデオの興味ある動作を時間的に特定し、分類することである。
この課題では,2ストリームコンセンサスネットワーク(TSCN)を主要なフレームワークとして採用しています。
この課題では,本手法が今後の学術研究のベースラインとなることを期待して,第2位にランクインした。
論文 参考訳(メタデータ) (2021-06-21T03:36:36Z) - 2nd Place Solution for Waymo Open Dataset Challenge - Real-time 2D
Object Detection [26.086623067939605]
本稿では,画像から2次元物体を検出するリアルタイム手法を提案する。
我々は、加速度RTを活用して、検出パイプラインの推論時間を最適化する。
我々のフレームワークはNvidia Tesla V100 GPU上で45.8ms/frameのレイテンシを実現する。
論文 参考訳(メタデータ) (2021-06-16T11:32:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。