Decodable hybrid dynamics of open quantum systems with Z_2 symmetry
- URL: http://arxiv.org/abs/2108.04274v2
- Date: Thu, 14 Mar 2024 16:22:17 GMT
- Title: Decodable hybrid dynamics of open quantum systems with Z_2 symmetry
- Authors: Yaodong Li, Matthew P. A. Fisher,
- Abstract summary: We explore a class of "open" quantum circuit models with local decoherence ("noise") and local projective measurements.
Within the spin glass phase the circuit dynamics can be interpreted as a quantum repetition code.
We devise a novel decoding algorithm for recovering an arbitrary initial qubit state in the code space.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explore a class of "open" quantum circuit models with local decoherence ("noise") and local projective measurements, each respecting a global Z_2 symmetry. The model supports a spin glass phase where the Z_2 symmetry is spontaneously broken (not possible in an equilibrium 1d system), a paramagnetic phase characterized by a divergent susceptibility, and an intermediate "trivial" phase. All three phases are also stable to Z_2-symmetric local unitary gates, and the dynamical phase transitions between the phases are in the percolation universality class. The open circuit dynamics can be purified by explicitly introducing a bath with its own "scrambling" dynamics, as in [Bao, Choi, Altman, arXiv:2102.09164], which does not change any of the universal physics. Within the spin glass phase the circuit dynamics can be interpreted as a quantum repetition code, with each stabilizer of the code measured stochastically at a finite rate, and the decoherences as effective bit-flip errors. Motivated by the geometry of the spin glass phase, we devise a novel decoding algorithm for recovering an arbitrary initial qubit state in the code space, assuming knowledge of the history of the measurement outcomes, and the ability of performing local Pauli measurements and gates on the final state. For a circuit with L^d qubits running for time T, the time needed to execute the decoder scales as O(L^d T) (with dimensionality d). With this decoder in hand, we find that the information of the initial encoded qubit state can be retained (and then recovered) for a time logarithmic in L for a 1d circuit, and for a time at least linear in L in 2d below a finite error threshold. For both the repetition and toric codes, we compare and contrast our decoding algorithm with earlier algorithms that map the error model to the random bond Ising model.
Related papers
- Low-overhead non-Clifford fault-tolerant circuits for all non-chiral abelian topological phases [0.7873629568804646]
We propose a family of explicit geometrically local circuits on a 2-dimensional planar grid of qudits.
These circuits are constructed from measuring 1-form symmetries in discrete fixed-point path integrals.
We prove fault tolerance under arbitrary local (including non-Pauli) noise for a very general class of topological circuits.
arXiv Detail & Related papers (2024-03-18T18:00:00Z) - Stabilization of symmetry-protected long-range entanglement in stochastic quantum circuits [0.0]
We consider quantum circuits in one and two dimensions comprising randomly applied unitary gates and local measurements.
In the absence of randomness, the protocol generates a symmetry-protected long-range entangled state in a finite-depth circuit.
We find two important time scales that we associate with the emergence of certain symmetry generators.
arXiv Detail & Related papers (2023-06-22T16:09:12Z) - Majorana Loop Models for Measurement-Only Quantum Circuits [0.0]
Projective measurements in random quantum circuits lead to a rich breadth of entanglement phases and extend the realm of non-unitary quantum dynamics.
Here we explore the connection between measurement-only quantum circuits in one spatial dimension and the statistical mechanics of loop models in two dimensions.
arXiv Detail & Related papers (2023-05-29T18:45:11Z) - A Solvable Model of Quantum Darwinism-Encoding Transitions [0.0]
We consider a random Clifford circuit on an expanding tree, whose input qubit is entangled with a reference.
The model has a Quantum Darwinism phase, where one classical bit of information about the reference can be retrieved from an arbitrarily small fraction of the output qubits.
We relate our approach to measurement induced phase transitions (MIPTs) to a modified model where an environment eavesdrops on an encoding system.
arXiv Detail & Related papers (2023-05-05T17:14:57Z) - Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent
and Incoherent Photons Found with Gradient Search [77.34726150561087]
We consider an environment formed by incoherent photons as a resource for controlling open quantum systems via an incoherent control.
We exploit a coherent control in the Hamiltonian and an incoherent control in the dissipator which induces the time-dependent decoherence rates.
arXiv Detail & Related papers (2023-02-28T07:36:02Z) - Experimental realization of deterministic and selective photon addition
in a bosonic mode assisted by an ancillary qubit [50.591267188664666]
Bosonic quantum error correcting codes are primarily designed to protect against single-photon loss.
Error correction requires a recovery operation that maps the error states -- which have opposite parity -- back onto the code states.
Here, we realize a collection of photon-number-selective, simultaneous photon addition operations on a bosonic mode.
arXiv Detail & Related papers (2022-12-22T23:32:21Z) - Simulating scalar field theories on quantum computers with limited
resources [62.997667081978825]
We present a quantum algorithm for implementing $phi4$ lattice scalar field theory on qubit computers.
The algorithm allows efficient $phi4$ state preparation for a large range of input parameters in both the normal and broken symmetry phases.
arXiv Detail & Related papers (2022-10-14T17:28:15Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - LOv-Calculus: A Graphical Language for Linear Optical Quantum Circuits [58.720142291102135]
We introduce the LOv-calculus, a graphical language for reasoning about linear optical quantum circuits.
Two LOv-circuits represent the same quantum process if and only if one can be transformed into the other with the rules of the LOv-calculus.
arXiv Detail & Related papers (2022-04-25T16:59:26Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
Unitary evolution under a time dependent Hamiltonian is a key component of simulation on quantum hardware.
We present an algorithm that compresses the Trotter steps into a single block of quantum gates.
This results in a fixed depth time evolution for certain classes of Hamiltonians.
arXiv Detail & Related papers (2021-08-06T19:38:01Z) - Measurement-induced topological entanglement transitions in symmetric
random quantum circuits [0.0]
We study a class of (1+1)D symmetric random quantum circuits with two competing types of measurements.
The circuit exhibits a rich phase diagram involving robust symmetry-protected topological (SPT), trivial, and volume law entangled phases.
arXiv Detail & Related papers (2020-04-15T18:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.