Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics
- URL: http://arxiv.org/abs/2206.01756v2
- Date: Thu, 4 May 2023 19:39:05 GMT
- Title: Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics
- Authors: Alexander Schuckert, Annabelle Bohrdt, Eleanor Crane, Michael Knap
- Abstract summary: We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
- Score: 62.997667081978825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Preparing finite temperature states in quantum simulators of spin systems,
such as trapped ions or Rydberg atoms in optical tweezers, is challenging due
to their almost perfect isolation from the environment. Here, we show how
finite-temperature observables can be obtained with an algorithm motivated from
the Jarzynski equality and equivalent to the one in Lu, Banuls and Cirac, PRX
Quantum 2, 020321 (2021). It consists of classical importance sampling of
initial states and a measurement of the Loschmidt echo with a quantum
simulator. We use the method as a quantum-inspired classical algorithm and
simulate the protocol with matrix product states to analyze the requirements on
a quantum simulator. This way, we show that a finite temperature phase
transition in the long-range transverse field Ising model can be characterized
in trapped ion quantum simulators. We propose a concrete measurement protocol
for the Loschmidt echo and discuss the influence of measurement noise,
dephasing, as well as state preparation and measurement errors. We argue that
the algorithm is robust against those imperfections under realistic conditions.
Related papers
- Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Robust Extraction of Thermal Observables from State Sampling and
Real-Time Dynamics on Quantum Computers [49.1574468325115]
We introduce a technique that imposes constraints on the density of states, most notably its non-negativity, and show that this way, we can reliably extract Boltzmann weights from noisy time series.
Our work enables the implementation of the time-series algorithm on present-day quantum computers to study finite temperature properties of many-body quantum systems.
arXiv Detail & Related papers (2023-05-30T18:00:05Z) - Simulating prethermalization using near-term quantum computers [1.2189422792863451]
We propose an experimental protocol for probing dynamics and equilibrium properties on near-term digital quantum computers.
We show that it is possible to study thermalization even with a relatively coarse Trotter decomposition of the Hamiltonian evolution of interest.
arXiv Detail & Related papers (2023-03-15T09:04:57Z) - Variational quantum simulation of the quantum critical regime [0.0]
We propose a variational approach, which minimizes the variational free energy, to simulate and locate the quantum critical regime on a quantum computer.
Our work suggests a practical way as well as a first step for investigating quantum critical systems at finite temperatures on quantum devices with few qubits.
arXiv Detail & Related papers (2023-02-15T02:59:41Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Coherent quantum annealing in a programmable 2000-qubit Ising chain [1.2472275770062884]
We show coherent evolution through a quantum phase transition in the paradigmatic setting of the 1D transverse-field Ising chain.
Results are in quantitative agreement with analytical solutions to the closed-system quantum model.
These experiments demonstrate that large-scale quantum annealers can be operated coherently.
arXiv Detail & Related papers (2022-02-11T19:00:00Z) - Engineering analog quantum chemistry Hamiltonians using cold atoms in
optical lattices [69.50862982117127]
We benchmark the working conditions of the numerically analog simulator and find less demanding experimental setups.
We also provide a deeper understanding of the errors of the simulation appearing due to discretization and finite size effects.
arXiv Detail & Related papers (2020-11-28T11:23:06Z) - Entanglement Hamiltonian Tomography in Quantum Simulation [0.0]
Entanglement in quantum simulators is an outstanding challenge in today's era of intermediate scale quantum devices.
Here we discuss an efficient tomographic protocol for reconstructing reduced density matrices and entanglement spectra for spin systems.
We show the validity and efficiency of the protocol for a long-range Ising model in 1D using numerical simulations.
arXiv Detail & Related papers (2020-09-18T18:12:22Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z) - Continuous-variable assisted thermal quantum simulation [1.6530012863603747]
We present an experimentally feasible quantum algorithm assisted with continuous-variable simulating for quantum systems at finite temperatures.
It is found that the important crossover phase diagram of the Kitaev ring can be accurately simulated by a quantum computer with only a few qubits.
We propose a protocol implementable with superconducting or trapped ion quantum computers.
arXiv Detail & Related papers (2020-05-31T09:04:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.