論文の概要: AASeg: Attention Aware Network for Real Time Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2108.04349v4
- Date: Sat, 05 Jul 2025 23:06:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-09 16:34:36.139793
- Title: AASeg: Attention Aware Network for Real Time Semantic Segmentation
- Title(参考訳): AASeg: リアルタイムセマンティックセグメンテーションのための注意意識ネットワーク
- Authors: Abhinav Sagar,
- Abstract要約: リアルタイムセマンティックセグメンテーションのための新しいアテンション・アウェアネットワークであるAASegを提案する。
AASegは精度と効率のトレードオフを実現し、従来のリアルタイム手法よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semantic segmentation is a fundamental task in computer vision that involves dense pixel-wise classification for scene understanding. Despite significant progress, achieving high accuracy while maintaining real-time performance remains a challenging trade-off, particularly for deployment in resource-constrained or latency-sensitive applications. In this paper, we propose AASeg, a novel Attention-Aware Network for real-time semantic segmentation. AASeg effectively captures both spatial and channel-wise dependencies through lightweight Spatial Attention (SA) and Channel Attention (CA) modules, enabling enhanced feature discrimination without incurring significant computational overhead. To enrich contextual representation, we introduce a Multi-Scale Context (MSC) module that aggregates dense local features across multiple receptive fields. The outputs from attention and context modules are adaptively fused to produce high-resolution segmentation maps. Extensive experiments on Cityscapes, ADE20K, and CamVid demonstrate that AASeg achieves a compelling trade-off between accuracy and efficiency, outperforming prior real-time methods.
- Abstract(参考訳): セマンティックセグメンテーション(Semantic segmentation)は、シーン理解のための密度の高いピクセル単位の分類を含むコンピュータビジョンの基本的なタスクである。
大幅な進歩にもかかわらず、リアルタイムパフォーマンスを維持しながら高い精度を達成することは、特にリソース制約やレイテンシに敏感なアプリケーションへのデプロイにおいて、難しいトレードオフである。
本稿では,リアルタイムセマンティックセグメンテーションのための新しいアテンション・アウェアネットワークであるAASegを提案する。
AASegは、軽量な空間意図(SA)とチャネル意図(CA)モジュールを通じて、空間的およびチャネル的依存関係を効果的にキャプチャし、計算上のオーバーヘッドを生じさせることなく、特徴の識別を向上する。
文脈表現を充実させるために,複数の受容領域にまたがる密集した局所的特徴を集約するマルチスケールコンテキスト(MSC)モジュールを導入する。
注意点とコンテキストモジュールからの出力は適応的に融合し、高分解能セグメンテーションマップを生成する。
Cityscapes、ADE20K、CamVidに関する大規模な実験は、AASegが精度と効率の強力なトレードオフを達成し、従来のリアルタイム手法よりも優れていることを示した。
関連論文リスト
- LIRA: Inferring Segmentation in Large Multi-modal Models with Local Interleaved Region Assistance [56.474856189865946]
大規模マルチモーダルモデル(LMM)は不正確なセグメンテーションと幻覚的理解に苦しむ。
視覚的理解とセグメンテーションの相補的関係を生かしたフレームワークであるLIRAを提案する。
LIRAはセグメンテーションと理解タスクの両方で最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2025-07-08T07:46:26Z) - Pay Attention to What and Where? Interpretable Feature Extractor in Vision-based Deep Reinforcement Learning [2.713322720372114]
説明可能な深層強化学習における現在のアプローチは、視覚入力中の物体に注意マスクが変位する制限がある。
本研究では,エージェントが空間領域に集中している「何」と「どこに」の両方を正確に表現するために,正確な注意マスクを生成するための解釈可能な特徴外的アーキテクチャを提案する。
得られたアテンションマスクは、人間によって一貫性があり、空間次元が正確であり、視覚入力における重要な物体や位置を効果的に強調する。
論文 参考訳(メタデータ) (2025-04-14T10:18:34Z) - Every SAM Drop Counts: Embracing Semantic Priors for Multi-Modality Image Fusion and Beyond [52.486290612938895]
本稿では,Segment Anything Model (SAM) のセグメンテーションモデルからのセグメンテーション知識を利用して,融合結果の質を向上し,下流タスク適応性を実現する手法を提案する。
具体的には、SAMから高レベルなセマンティック・セマンティック・セマンティック・セマンティック・セマンティック・アテンション(SPA)モジュールを抽出し、永続リポジトリを介してソース情報を効率的に保持する。
本手法は,実運用効率を維持しつつ,高品質な視覚結果と下流タスク適応性のバランスを実現する。
論文 参考訳(メタデータ) (2025-03-03T06:16:31Z) - ContextFormer: Redefining Efficiency in Semantic Segmentation [48.81126061219231]
畳み込み法は、局所的な依存関係をうまく捉えるが、長距離関係に苦慮する。
ビジョントランスフォーマー(ViT)は、グローバルなコンテキストキャプチャでは優れるが、高い計算要求によって妨げられる。
我々は,リアルタイムセマンティックセグメンテーションの効率,精度,堅牢性のバランスをとるために,CNN と ViT の強みを活用したハイブリッドフレームワーク ContextFormer を提案する。
論文 参考訳(メタデータ) (2025-01-31T16:11:04Z) - A Deep Semantic Segmentation Network with Semantic and Contextual Refinements [11.755865577258767]
本稿では,セグメンテーションネットワーク内でこの問題に対処するためのセマンティックリファインメントモジュール(SRM)を提案する。
CRM(Contextual Refinement Module)は、空間次元とチャネル次元の両方にわたるグローバルなコンテキスト情報をキャプチャする。
これらのモジュールの有効性は、3つの広く使われているデータセット(Cityscapes, Bdd100K, ADE20K-demonstrating)で検証される。
論文 参考訳(メタデータ) (2024-12-11T03:40:46Z) - Evaluating the Efficacy of Cut-and-Paste Data Augmentation in Semantic Segmentation for Satellite Imagery [4.499833362998487]
本研究では,衛星画像のセマンティックセグメンテーションにおけるカット・アンド・ペースト拡張手法の有効性について検討した。
私たちは、通常ラベル付きインスタンスを必要とするこの拡張を、セマンティックセグメンテーションのケースに適用します。
評価のためにDynamicEarthNetデータセットとU-Netモデルを用いて、この拡張により、テストセットのmIoUスコアが37.9から44.1に大幅に向上することを発見した。
論文 参考訳(メタデータ) (2024-04-08T17:18:30Z) - Segment Anything Model is a Good Teacher for Local Feature Learning [19.66262816561457]
局所的な特徴の検出と記述は多くのコンピュータビジョンタスクにおいて重要な役割を果たす。
データ駆動型局所特徴学習手法は、訓練にピクセルレベルの対応に頼る必要がある。
本研究では,SAMFeatを教師として導入し,局所的な特徴学習の指導を行う。
論文 参考訳(メタデータ) (2023-09-29T05:29:20Z) - Cross-CBAM: A Lightweight network for Scene Segmentation [2.064612766965483]
リアルタイムセマンティックセグメンテーションのための新しい軽量ネットワークであるCross-CBAMネットワークを提案する。
CityscapesデータセットとCamvidデータセットの実験では、73.4% mIoU、240.9FPS、77.2% mIoU、NVIDIA GTX 1080Tiで88.6FPSを達成した。
論文 参考訳(メタデータ) (2023-06-04T09:03:05Z) - A Self-Training Framework Based on Multi-Scale Attention Fusion for
Weakly Supervised Semantic Segmentation [7.36778096476552]
融合型マルチスケールクラス対応アテンションマップを利用した自己学習手法を提案する。
異なるスケールのアテンションマップから情報を収集し、マルチスケールアテンションマップを得る。
次に、潜在的な領域を拡大し、ノイズの少ない領域を減らし、認知と再活性化の戦略を適用した。
論文 参考訳(メタデータ) (2023-05-10T02:16:12Z) - De-coupling and De-positioning Dense Self-supervised Learning [65.56679416475943]
Dense Self-Supervised Learning (SSL)メソッドは、複数のオブジェクトでイメージを処理する際に、画像レベルの特徴表現を使用する際の制限に対処する。
本研究は, 層深度やゼロパディングに伴う受容野の増大によって生じる, 結合と位置バイアスに悩まされていることを示す。
我々はCOCOにおける本手法の利点と、オブジェクト分類、セマンティックセグメンテーション、オブジェクト検出のための新しい挑戦的ベンチマークであるOpenImage-MINIについて示す。
論文 参考訳(メタデータ) (2023-03-29T18:07:25Z) - A Threefold Review on Deep Semantic Segmentation: Efficiency-oriented,
Temporal and Depth-aware design [77.34726150561087]
我々は、自動運転車のビジョンの文脈において、Deep Semanticの最も関連性があり最近の進歩について調査を行う。
私たちの主な目的は、それぞれの視点で直面している主要な方法、利点、制限、結果、課題に関する包括的な議論を提供することです。
論文 参考訳(メタデータ) (2023-03-08T01:29:55Z) - Deep Multi-Branch Aggregation Network for Real-Time Semantic
Segmentation in Street Scenes [32.54045305607654]
多くの最先端のリアルタイムセマンティックセグメンテーション手法は、空間的詳細や文脈情報を犠牲にして高速な推論を行う傾向にある。
街路シーンにおけるリアルタイムセマンティックセグメンテーションを実現するために,エンコーダ・デコーダ構造に基づく新しいディープ・マルチブランチ・アグリゲーション・ネットワーク(DMA-Net)を提案する。
提案したDMA-Netは,1個のNVIDIA GTX 1080Ti GPUのみを用いて,それぞれ46.7 FPSと119.8 FPSの予測速度で,平均77.0%,平均73.6%のUnion(mIoU)が得られる。
論文 参考訳(メタデータ) (2022-03-08T12:07:32Z) - Residual Moment Loss for Medical Image Segmentation [56.72261489147506]
位置情報は,対象物体の多様体構造を捉えた深層学習モデルに有効であることが証明された。
既存のほとんどの手法は、ネットワークが学習するために、位置情報を暗黙的にエンコードする。
セグメント化対象の位置情報を明示的に埋め込むために,新しい損失関数,すなわち残差モーメント(RM)損失を提案する。
論文 参考訳(メタデータ) (2021-06-27T09:31:49Z) - Prototypical Cross-Attention Networks for Multiple Object Tracking and
Segmentation [95.74244714914052]
複数のオブジェクトのトラッキングとセグメンテーションには、与えられたクラスのセットに属するオブジェクトを検出し、追跡し、セグメンテーションする必要がある。
オンライン上でリッチ・テンポラル情報を活用するプロトタイプ・クロス・アテンション・ネットワーク(PCAN)を提案する。
PCANは、Youtube-VISとBDD100Kデータセットで、現在のビデオインスタンス追跡とセグメンテーションコンテストの勝者を上回っている。
論文 参考訳(メタデータ) (2021-06-22T17:57:24Z) - CTNet: Context-based Tandem Network for Semantic Segmentation [77.4337867789772]
本研究では,空間コンテキスト情報とチャネルコンテキスト情報とを対話的に探索し,新しいコンテキストベースタンデムネットワーク(CTNet)を提案する。
セマンティックセグメンテーションのための学習表現の性能をさらに向上するため、2つのコンテキストモジュールの結果を適応的に統合する。
論文 参考訳(メタデータ) (2021-04-20T07:33:11Z) - STEP: Segmenting and Tracking Every Pixel [107.23184053133636]
新しいベンチマークを示す: Segmenting and Tracking Every Pixel (STEP)
私たちの仕事は、空間領域と時間領域の両方で密な解釈を必要とする現実世界の設定で、このタスクをターゲットとする最初のものです。
性能を測定するために,新しい評価指標と追跡品質(STQ)を提案する。
論文 参考訳(メタデータ) (2021-02-23T18:43:02Z) - Real-time Semantic Segmentation with Fast Attention [94.88466483540692]
本稿では,高解像度画像と映像をリアルタイムにセマンティックセグメンテーションするための新しいアーキテクチャを提案する。
提案したアーキテクチャは我々の空間的注意の速さに依存しており、これは一般的な自己注意機構の単純かつ効率的な修正である。
複数のデータセットに対する結果から,既存の手法に比べて精度と速度が向上し,優れた性能を示した。
論文 参考訳(メタデータ) (2020-07-07T22:37:16Z) - Semantic Segmentation With Multi Scale Spatial Attention For Self
Driving Cars [2.7317088388886384]
本稿では,様々なスケールのマルチスケール特徴融合を用いた新しいニューラルネットワークを提案し,その精度と効率的なセマンティックイメージセグメンテーションを提案する。
我々は、ResNetベースの特徴抽出器、ダウンサンプリング部における拡張畳み込み層、アップサンプリング部におけるアトラス畳み込み層を使用し、コンキャット操作を用いてそれらをマージした。
より文脈的な情報をエンコードし、ネットワークの受容領域を強化するため、新しいアテンションモジュールが提案されている。
論文 参考訳(メタデータ) (2020-06-30T20:19:09Z) - Real-Time High-Performance Semantic Image Segmentation of Urban Street
Scenes [98.65457534223539]
都市景観のロバストなセマンティックセマンティックセグメンテーションのためのリアルタイムDCNNに基づく高速DCNN手法を提案する。
提案手法は, 51.0 fps と 39.3 fps の推論速度で, 平均 73.6% と平均 68.0% (mIoU) の精度を実現する。
論文 参考訳(メタデータ) (2020-03-11T08:45:53Z) - Hybrid Multiple Attention Network for Semantic Segmentation in Aerial
Images [24.35779077001839]
グローバルな相関関係を適応的に捉えるために,Hybrid Multiple Attention Network (HMANet) という新しいアテンションベースのフレームワークを提案する。
本稿では,機能的冗長性を低減し,自己注意機構の効率を向上させるため,単純で効果的な領域シャッフルアテンション(RSA)モジュールを提案する。
論文 参考訳(メタデータ) (2020-01-09T07:47:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。