論文の概要: Video Transformer for Deepfake Detection with Incremental Learning
- arxiv url: http://arxiv.org/abs/2108.05307v1
- Date: Wed, 11 Aug 2021 16:22:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-12 13:25:18.076948
- Title: Video Transformer for Deepfake Detection with Incremental Learning
- Title(参考訳): インクリメンタル学習によるディープフェイク検出のためのビデオトランス
- Authors: Sohail A. Khan and Hang Dai
- Abstract要約: ディープフェイクによる顔の偽造はインターネットに広く浸透しており、これが深刻な社会的懸念を引き起こす。
本稿では,ディープフェイクビデオを検出するためのインクリメンタル学習を備えた新しいビデオトランスフォーマーを提案する。
- 参考スコア(独自算出の注目度): 11.586926513803077
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Face forgery by deepfake is widely spread over the internet and this raises
severe societal concerns. In this paper, we propose a novel video transformer
with incremental learning for detecting deepfake videos. To better align the
input face images, we use a 3D face reconstruction method to generate UV
texture from a single input face image. The aligned face image can also provide
pose, eyes blink and mouth movement information that cannot be perceived in the
UV texture image, so we use both face images and their UV texture maps to
extract the image features. We present an incremental learning strategy to
fine-tune the proposed model on a smaller amount of data and achieve better
deepfake detection performance. The comprehensive experiments on various public
deepfake datasets demonstrate that the proposed video transformer model with
incremental learning achieves state-of-the-art performance in the deepfake
video detection task with enhanced feature learning from the sequenced data.
- Abstract(参考訳): ディープフェイクによるフェイス偽造は、インターネット上で広く広まり、深刻な社会的な懸念を引き起こしている。
本稿では,Deepfakeビデオ検出のためのインクリメンタル学習による新しいビデオトランスフォーマを提案する。
入力顔画像のアライメントを改善するために,1つの入力顔画像からuvテクスチャを生成するために,3次元顔再構成法を用いる。
また、アライメントされた顔画像は、UVテクスチャ画像では認識できないポーズ、目まき、口の動き情報も提供できるので、顔画像とUVテクスチャマップの両方を用いて画像の特徴を抽出する。
提案したモデルを少ないデータ量で微調整し、より優れた深度検出性能を実現するための漸進的な学習戦略を提案する。
様々なディープフェイクデータセットに関する包括的実験により,インクリメンタル学習を用いたビデオトランスフォーマモデルが,シーケンスデータから特徴学習が強化されたディープフェイク映像検出タスクにおいて最先端の性能を実現することを実証した。
関連論文リスト
- Deepfake detection in videos with multiple faces using geometric-fakeness features [79.16635054977068]
被害者や人物のディープフェイクは、脅迫、ゆがみ、金融詐欺の詐欺師によって使用される。
本研究では,映像中の顔の存在の動的度を特徴付ける幾何学的フェイクネス機能(GFF)を提案する。
我々は、ビデオに同時に存在する複数の顔でビデオを分析するために、我々のアプローチを採用している。
論文 参考訳(メタデータ) (2024-10-10T13:10:34Z) - UV Gaussians: Joint Learning of Mesh Deformation and Gaussian Textures for Human Avatar Modeling [71.87807614875497]
メッシュ変形と2次元UV空間のガウステクスチャを共同学習することで3次元人体をモデル化するUVガウスアンを提案する。
我々は,多視点画像,走査モデル,パラメトリックモデル登録,およびそれに対応するテクスチャマップを含む,人間の動作の新たなデータセットを収集し,処理する。
論文 参考訳(メタデータ) (2024-03-18T09:03:56Z) - AntifakePrompt: Prompt-Tuned Vision-Language Models are Fake Image Detectors [24.78672820633581]
深層生成モデルは、偽情報や著作権侵害に対する懸念を高めながら、驚くほど偽のイメージを作成することができる。
実画像と偽画像とを区別するためにディープフェイク検出技術が開発された。
本稿では,視覚言語モデルとアクシデントチューニング技術を用いて,Antifake Promptと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-10-26T14:23:45Z) - Deepfake Video Detection Using Generative Convolutional Vision
Transformer [3.8297637120486496]
本稿では,深度映像検出のためのGenConViT(Generative Convolutional Vision Transformer)を提案する。
我々のモデルは特徴抽出のためにConvNeXtとSwin Transformerモデルを組み合わせている。
GenConViTは、視覚的アーティファクトと潜在データ分布から学習することにより、幅広いディープフェイクビデオを検出するパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2023-07-13T19:27:40Z) - Undercover Deepfakes: Detecting Fake Segments in Videos [1.2609216345578933]
ディープフェイク・ジェネレーションは ディープフェイクの新しいパラダイムだ ほとんどは 真実を歪めるために わずかに修正された 実際のビデオだ
本稿では,フレームとビデオレベルでディープフェイク予測を行うことにより,この問題に対処できるディープフェイク検出手法を提案する。
特に、私たちが取り組むパラダイムは、ディープフェイクのモデレーションのための強力なツールを形成します。
論文 参考訳(メタデータ) (2023-05-11T04:43:10Z) - Deep Convolutional Pooling Transformer for Deepfake Detection [54.10864860009834]
本研究では,局所的・グローバル的に決定的な画像特徴を取り入れた深部畳み込み変換器を提案する。
具体的には,抽出した特徴を充実させ,有効性を高めるために,畳み込みプーリングと再アテンションを適用した。
提案手法は、内部実験と相互データセット実験の両方において、最先端のベースラインを一貫して上回る。
論文 参考訳(メタデータ) (2022-09-12T15:05:41Z) - Copy Motion From One to Another: Fake Motion Video Generation [53.676020148034034]
人工知能の魅力的な応用は、任意の所望の動作を行う対象者のビデオを生成することである。
現在の手法では、通常、生成されたビデオの信頼性を評価するために、L2損失のGANを用いる。
本稿では,ポーズから前景画像へのマッピングの学習を容易にする理論的動機付け型Gromov-Wasserstein損失を提案する。
本手法は,人物の複雑な動きを忠実にコピーすることで,現実的な人物映像を生成できる。
論文 参考訳(メタデータ) (2022-05-03T08:45:22Z) - DA-FDFtNet: Dual Attention Fake Detection Fine-tuning Network to Detect
Various AI-Generated Fake Images [21.030153777110026]
ディープフェイク」のような偽画像の作成がずっと簡単になった。
近年の研究では、少量のトレーニングデータを用いて、フェイク画像や動画をより効果的に生成する、いくつかのショットラーニングが導入されている。
本研究では,操作した偽顔画像を検出するために,DA-tNet(Dual Attention Fine-tuning Network)を提案する。
論文 参考訳(メタデータ) (2021-12-22T16:25:24Z) - M2TR: Multi-modal Multi-scale Transformers for Deepfake Detection [74.19291916812921]
Deepfake技術によって生成された鍛造画像は、デジタル情報の信頼性に深刻な脅威をもたらします。
本稿では,Deepfake検出のための微妙な操作アーチファクトを異なるスケールで捉えることを目的とする。
最先端の顔スワッピングと顔の再現方法によって生成された4000のDeepFakeビデオで構成される高品質のDeepFakeデータセットSR-DFを紹介します。
論文 参考訳(メタデータ) (2021-04-20T05:43:44Z) - Deepfake Video Detection Using Convolutional Vision Transformer [0.0]
ディープラーニング技術は、Deepfakesとして知られる超現実的なビデオを生成し合成することができる。
Deepfakesは、アイデンティティの盗難、フィッシング、詐欺などの有害な目的のために使用された場合、すべての人に光る脅威をもたらします。
本稿では,Deepfakes検出のためのConvolutional Vision Transformerを提案する。
論文 参考訳(メタデータ) (2021-02-22T15:56:05Z) - Sharp Multiple Instance Learning for DeepFake Video Detection [54.12548421282696]
我々はDeepFakeビデオに、ビデオレベルのラベルのみを提供するが、フェイクビデオのすべての顔が操作されるわけではない部分的な顔攻撃という新しい問題を導入する。
インスタンス埋め込みからバッグ予測への直接マッピングを構築する鋭いMIL(S-MIL)を提案する。
FFPMSと広く使われているDFDCデータセットの実験により、S-MILは部分的に攻撃されたDeepFakeビデオ検出において他の手法よりも優れていることが確認された。
論文 参考訳(メタデータ) (2020-08-11T08:52:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。