論文の概要: Intelligent computational model for the classification of Covid-19 with
chest radiography compared to other respiratory diseases
- arxiv url: http://arxiv.org/abs/2108.05536v1
- Date: Thu, 12 Aug 2021 05:07:11 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-14 01:04:43.770817
- Title: Intelligent computational model for the classification of Covid-19 with
chest radiography compared to other respiratory diseases
- Title(参考訳): 胸部X線撮影によるCovid-19の分類と他の呼吸器疾患との比較
- Authors: Paula Santos
- Abstract要約: 統計的および計算的な方法で処理された肺X線画像は、肺炎と新型コロナウイルスを区別することができる。
本研究は、新型コロナウイルスの疑いのある患者を診察し、診断する方法を改善するために、肺X線の特徴を抽出することが可能であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Lung X-ray images, if processed using statistical and computational methods,
can distinguish pneumonia from COVID-19. The present work shows that it is
possible to extract lung X-ray characteristics to improve the methods of
examining and diagnosing patients with suspected COVID-19, distinguishing them
from malaria, dengue, H1N1, tuberculosis, and Streptococcus pneumonia. More
precisely, an intelligent computational model was developed to process lung
X-ray images and classify whether the image is of a patient with COVID-19. The
images were processed and extracted their characteristics. These
characteristics were the input data for an unsupervised statistical learning
method, PCA, and clustering, which identified specific attributes of X-ray
images with Covid-19. The introduction of statistical models allowed a fast
algorithm, which used the X-means clustering method associated with the
Bayesian Information Criterion (CIB). The developed algorithm efficiently
distinguished each pulmonary pathology from X-ray images. The method exhibited
excellent sensitivity. The average recognition accuracy of COVID-19 was 0.93
and 0.051.
- Abstract(参考訳): 統計的および計算的な方法で処理された肺X線画像は、肺炎と新型コロナウイルスを区別することができる。
本研究は, マラリア, デング, H1N1, 結核, Streptococcus pneumonia を鑑別し, 肺X線学的特徴を抽出し, 患者を検査し, 診断する方法を改善することができることを示す。
より正確には、肺X線画像を処理し、その画像が新型コロナウイルス患者のものであるかどうかを分類するインテリジェントな計算モデルが開発された。
画像は処理され,その特徴を抽出した。
これらの特徴は、教師なし統計学習法、PCA、クラスタリングの入力データであり、コビッド19でX線画像の特徴を特定できた。
統計モデルの導入により、ベイズ情報基準(CIB)に関連するX平均クラスタリング手法を用いた高速アルゴリズムが実現された。
開発したアルゴリズムはX線画像から各肺病理を効率よく識別する。
感度は良好であった。
平均認識精度は0.93と0.051であった。
関連論文リスト
- COVID-19 Detection Based on Self-Supervised Transfer Learning Using
Chest X-Ray Images [38.65823547986758]
胸部X線(CXR)画像から新型コロナウイルスを検出するための自己教師伝達学習法を提案する。
オープンなCOVID-19 CXRデータセットの定量的評価と,視覚検査のための質的結果について検討した。
論文 参考訳(メタデータ) (2022-12-19T07:10:51Z) - Optimising Chest X-Rays for Image Analysis by Identifying and Removing
Confounding Factors [49.005337470305584]
新型コロナウイルス(COVID-19)のパンデミック(パンデミック)の間、新型コロナウイルス(COVID-19)の診断のための緊急設定で実施される画像の量は、臨床用CXRの取得が広範囲に及んだ。
公開データセット内の臨床的に取得されたCXRの変動品質は、アルゴリズムのパフォーマンスに大きな影響を及ぼす可能性がある。
我々は、新型コロナウイルスの胸部X線データセットを前処理し、望ましくないバイアスを取り除くための、シンプルで効果的なステップワイズアプローチを提案する。
論文 参考訳(メタデータ) (2022-08-22T13:57:04Z) - A novel framework based on deep learning and ANOVA feature selection
method for diagnosis of COVID-19 cases from chest X-ray Images [0.0]
新型コロナウイルスは武漢で最初に確認され、急速に世界中に広がった。
最もアクセスしやすい方法はRT-PCRである。
RT-PCRと比較すると,胸部CTと胸部X線像が優れた結果を示した。
DenseNet169はX線画像から特徴を抽出するために使用された。
論文 参考訳(メタデータ) (2021-09-30T16:10:31Z) - The pitfalls of using open data to develop deep learning solutions for
COVID-19 detection in chest X-rays [64.02097860085202]
深層学習モデルは、胸部X線から新型コロナウイルスを識別するために開発された。
オープンソースデータのトレーニングやテストでは,結果は異例です。
データ分析とモデル評価は、人気のあるオープンソースデータセットであるCOVIDxが実際の臨床問題を代表していないことを示している。
論文 参考訳(メタデータ) (2021-09-14T10:59:11Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Classification of COVID-19 X-ray Images Using a Combination of Deep and
Handcrafted Features [0.0]
私たちは、X線胸部スキャンから抽出された深い畳み込みと手作業の機能を組み合わせて、健康で一般的な肺炎、およびCOVID-19患者を識別します。
SVM と CNN のハンドクラフト特徴に対して, 0.963 と 0.983 との組み合わせによる分類作業において 0.988 の精度を実現した。
論文 参考訳(メタデータ) (2021-01-19T21:09:46Z) - PDCOVIDNet: A Parallel-Dilated Convolutional Neural Network Architecture
for Detecting COVID-19 from Chest X-Ray Images [1.4824891788575418]
新型コロナウイルスのパンデミックは、世界保健システムの繁栄を著しく損なわれ続けている。
胸部X線画像による放射線学的評価は,重要なスクリーニング技術の一つである。
胸部X線画像を用いた並列拡散畳み込みニューラルネットワークによる新型コロナウイルス検出システムを提案する。
論文 参考訳(メタデータ) (2020-07-29T12:28:16Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
我々は、集中治療室入院の必要性を予測するために、人口統計、バイタルサイン、実験室の所見から、肺不透明度の放射能と非画像の特徴を組み合わせる。
また, 地域性肺炎を含む他の肺疾患にも適用できるが, 地域性肺炎に限らない。
論文 参考訳(メタデータ) (2020-07-20T19:08:50Z) - Improving performance of CNN to predict likelihood of COVID-19 using
chest X-ray images with preprocessing algorithms [0.3180570080674292]
本研究は,胸部X線画像のコンピュータ支援診断手法の開発の可能性を示した。
8,474個の胸部X線画像のデータセットを使用して、CNNベースのCADスキームをトレーニングし、テストする。
検査結果は、3つのクラスを分類する際の総合的精度の94.0%、コビッドウイルスの感染者を検出する際の精度の98.6%を達成している。
論文 参考訳(メタデータ) (2020-06-11T16:45:46Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
前頭部胸部X線画像の重症度予測モデルを提案する。
このようなツールは、エスカレーションやケアの非エスカレーションに使用できる新型コロナウイルスの肺感染症の重症度を測定することができる。
論文 参考訳(メタデータ) (2020-05-24T23:13:16Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
最近、コロナウイルス病2019(COVID-19)の流行は世界中で急速に広まっている。
多くの患者と医師の重労働のために、機械学習アルゴリズムによるコンピュータ支援診断が緊急に必要である。
本研究では,CT画像から抽出した一連の特徴を用いて,COVID-19の診断を行うことを提案する。
論文 参考訳(メタデータ) (2020-05-06T15:19:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。