Charts and atlases for nonlinear data-driven models of dynamics on
manifolds
- URL: http://arxiv.org/abs/2108.05928v1
- Date: Thu, 12 Aug 2021 19:06:08 GMT
- Title: Charts and atlases for nonlinear data-driven models of dynamics on
manifolds
- Authors: Daniel Floryan, Michael D. Graham
- Abstract summary: We introduce a method for learning minimal-dimensional dynamical models from high-dimensional time series data that lie on a low-dimensional manifold.
We apply this method to examples ranging from simple periodic dynamics to complex, nominally high-dimensional non-periodic bursting dynamics of the Kuramoto-Sivashinsky equation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a method for learning minimal-dimensional dynamical models from
high-dimensional time series data that lie on a low-dimensional manifold, as
arises for many processes. For an arbitrary manifold, there is no smooth global
coordinate representation, so following the formalism of differential topology
we represent the manifold as an atlas of charts. We first partition the data
into overlapping regions. Then undercomplete autoencoders are used to find
low-dimensional coordinate representations for each region. We then use the
data to learn dynamical models in each region, which together yield a global
low-dimensional dynamical model. We apply this method to examples ranging from
simple periodic dynamics to complex, nominally high-dimensional non-periodic
bursting dynamics of the Kuramoto-Sivashinsky equation. We demonstrate that it:
(1) can yield dynamical models of the lowest possible dimension, where previous
methods generally cannot; (2) exhibits computational benefits including
scalability, parallelizability, and adaptivity; and (3) separates state space
into regions of distinct behaviours.
Related papers
- Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces a novel family of deep dynamical models designed to represent continuous-time sequence data.
We train the model using maximum likelihood estimation with Markov chain Monte Carlo.
Experiments on oscillating systems, videos and real-world state sequences (MuJoCo) illustrate that ODEs with the learnable energy-based prior outperform existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - Symplectic model reduction of Hamiltonian systems using data-driven
quadratic manifolds [0.559239450391449]
We present two novel approaches for the symplectic model reduction of high-dimensional Hamiltonian systems.
The addition of quadratic terms to the state approximation, which sits at the heart of the proposed methodologies, enables us to better represent intrinsic low-dimensionality.
arXiv Detail & Related papers (2023-05-24T18:23:25Z) - Autoencoders for discovering manifold dimension and coordinates in data
from complex dynamical systems [0.0]
Autoencoder framework combines implicit regularization with internal linear layers and $L$ regularization (weight decay)
We show that this framework can be naturally extended for applications of state-space modeling and forecasting.
arXiv Detail & Related papers (2023-05-01T21:14:47Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
Deep generative models have demonstrated successful applications in learning non-linear data distributions through a number of latent variables.
The nonlinearity of the generator implies that the latent space shows an unsatisfactory projection of the data space, which results in poor representation learning.
We show that geodesics and accurate computation can substantially improve the performance of deep generative models.
arXiv Detail & Related papers (2023-04-03T13:13:19Z) - Data-driven low-dimensional dynamic model of Kolmogorov flow [0.0]
Reduced order models (ROMs) that capture flow dynamics are of interest for decreasing computational costs for simulation.
This work presents a data-driven framework for minimal-dimensional models that effectively capture the dynamics and properties of the flow.
We apply this to Kolmogorov flow in a regime consisting of chaotic and intermittent behavior.
arXiv Detail & Related papers (2022-10-29T23:05:39Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
A core problem in machine learning is to learn expressive latent variables for model prediction on complex data.
Here, we develop an approach that improves expressiveness, provides partial interpretation, and is not restricted to specific applications.
arXiv Detail & Related papers (2022-10-07T17:56:53Z) - Learning Low-Dimensional Quadratic-Embeddings of High-Fidelity Nonlinear
Dynamics using Deep Learning [9.36739413306697]
Learning dynamical models from data plays a vital role in engineering design, optimization, and predictions.
We use deep learning to identify low-dimensional embeddings for high-fidelity dynamical systems.
arXiv Detail & Related papers (2021-11-25T10:09:00Z) - Data-Driven Reduced-Order Modeling of Spatiotemporal Chaos with Neural
Ordinary Differential Equations [0.0]
We present a data-driven reduced order modeling method that capitalizes on the chaotic dynamics of partial differential equations.
We find that dimension reduction improves performance relative to predictions in the ambient space.
With the low-dimensional model, we find excellent short- and long-time statistical recreation of the true dynamics for widely spaced data.
arXiv Detail & Related papers (2021-08-31T20:00:33Z) - Mix Dimension in Poincar\'{e} Geometry for 3D Skeleton-based Action
Recognition [57.98278794950759]
Graph Convolutional Networks (GCNs) have already demonstrated their powerful ability to model the irregular data.
We present a novel spatial-temporal GCN architecture which is defined via the Poincar'e geometry.
We evaluate our method on two current largest scale 3D datasets.
arXiv Detail & Related papers (2020-07-30T18:23:18Z) - Dense Non-Rigid Structure from Motion: A Manifold Viewpoint [162.88686222340962]
Non-Rigid Structure-from-Motion (NRSfM) problem aims to recover 3D geometry of a deforming object from its 2D feature correspondences across multiple frames.
We show that our approach significantly improves accuracy, scalability, and robustness against noise.
arXiv Detail & Related papers (2020-06-15T09:15:54Z) - Disentangling and Unifying Graph Convolutions for Skeleton-Based Action
Recognition [79.33539539956186]
We propose a simple method to disentangle multi-scale graph convolutions and a unified spatial-temporal graph convolutional operator named G3D.
By coupling these proposals, we develop a powerful feature extractor named MS-G3D based on which our model outperforms previous state-of-the-art methods on three large-scale datasets.
arXiv Detail & Related papers (2020-03-31T11:28:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.