Learning Low-Dimensional Quadratic-Embeddings of High-Fidelity Nonlinear
Dynamics using Deep Learning
- URL: http://arxiv.org/abs/2111.12995v1
- Date: Thu, 25 Nov 2021 10:09:00 GMT
- Title: Learning Low-Dimensional Quadratic-Embeddings of High-Fidelity Nonlinear
Dynamics using Deep Learning
- Authors: Pawan Goyal and Peter Benner
- Abstract summary: Learning dynamical models from data plays a vital role in engineering design, optimization, and predictions.
We use deep learning to identify low-dimensional embeddings for high-fidelity dynamical systems.
- Score: 9.36739413306697
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning dynamical models from data plays a vital role in engineering design,
optimization, and predictions. Building models describing dynamics of complex
processes (e.g., weather dynamics, or reactive flows) using empirical knowledge
or first principles are onerous or infeasible. Moreover, these models are
high-dimensional but spatially correlated. It is, however, observed that the
dynamics of high-fidelity models often evolve in low-dimensional manifolds.
Furthermore, it is also known that for sufficiently smooth vector fields
defining the nonlinear dynamics, a quadratic model can describe it accurately
in an appropriate coordinate system, conferring to the McCormick relaxation
idea in nonconvex optimization. Here, we aim at finding a low-dimensional
embedding of high-fidelity dynamical data, ensuring a simple quadratic model to
explain its dynamics. To that aim, this work leverages deep learning to
identify low-dimensional quadratic embeddings for high-fidelity dynamical
systems. Precisely, we identify the embedding of data using an autoencoder to
have the desired property of the embedding. We also embed a Runge-Kutta method
to avoid the time-derivative computations, which is often a challenge. We
illustrate the ability of the approach by a couple of examples, arising in
describing flow dynamics and the oscillatory tubular reactor model.
Related papers
- Deep Learning for Koopman Operator Estimation in Idealized Atmospheric Dynamics [2.2489531925874013]
Deep learning is revolutionizing weather forecasting, with new data-driven models achieving accuracy on par with operational physical models for medium-term predictions.
These models often lack interpretability, making their underlying dynamics difficult to understand and explain.
This paper proposes methodologies to estimate the Koopman operator, providing a linear representation of complex nonlinear dynamics to enhance the transparency of data-driven models.
arXiv Detail & Related papers (2024-09-10T13:56:54Z) - Learning Nonlinear Projections for Reduced-Order Modeling of Dynamical
Systems using Constrained Autoencoders [0.0]
We introduce a class of nonlinear projections described by constrained autoencoder neural networks in which both the manifold and the projection fibers are learned from data.
Our architecture uses invertible activation functions and biorthogonal weight matrices to ensure that the encoder is a left inverse of the decoder.
We also introduce new dynamics-aware cost functions that promote learning of oblique projection fibers that account for fast dynamics and nonnormality.
arXiv Detail & Related papers (2023-07-28T04:01:48Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Deep Kernel Learning of Dynamical Models from High-Dimensional Noisy
Data [1.3750624267664155]
The framework is composed of an encoder that compresses high-dimensional measurements into low-dimensional state variables.
The training of the proposed model is carried out in an unsupervised manner, not relying on labeled data.
Results show that the method can effectively denoise measurements, learn compact state representations and latent dynamical models.
arXiv Detail & Related papers (2022-08-27T09:47:44Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Decomposed Linear Dynamical Systems (dLDS) for learning the latent
components of neural dynamics [6.829711787905569]
We propose a new decomposed dynamical system model that represents complex non-stationary and nonlinear dynamics of time series data.
Our model is trained through a dictionary learning procedure, where we leverage recent results in tracking sparse vectors over time.
In both continuous-time and discrete-time instructional examples we demonstrate that our model can well approximate the original system.
arXiv Detail & Related papers (2022-06-07T02:25:38Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
We use machine learning techniques to learn a differentiable dynamics model of the system from data.
We show that a neural network can model highly nonlinear behaviors accurately for large time horizons.
In our hardware experiments, we demonstrate that our learned model can represent complex dynamics for both the Spot and Radio-controlled (RC) car.
arXiv Detail & Related papers (2022-04-09T22:07:34Z) - Reduced Order Dynamical Models For Complex Dynamics in Manufacturing and
Natural Systems Using Machine Learning [0.0]
This work develops reduced-order models of manufacturing and natural systems using a machine learning (ML) approach.
The approach is demonstrated on an entire soybean-oil to soybean-diesel process plant and a lake system.
Results show that the method identifies a high accuracy linear ODE models for the process plant, reflective of underlying linear stoichiometric mechanisms and mass balance driving the dynamics.
arXiv Detail & Related papers (2021-10-15T18:44:27Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
We propose a novel graph neural network approach, called TCL, which deals with the dynamically-evolving graph in a continuous-time fashion.
To the best of our knowledge, this is the first attempt to apply contrastive learning to representation learning on dynamic graphs.
arXiv Detail & Related papers (2021-05-17T15:33:25Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Learning Stable Deep Dynamics Models [91.90131512825504]
We propose an approach for learning dynamical systems that are guaranteed to be stable over the entire state space.
We show that such learning systems are able to model simple dynamical systems and can be combined with additional deep generative models to learn complex dynamics.
arXiv Detail & Related papers (2020-01-17T00:04:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.