An Operator Splitting View of Federated Learning
- URL: http://arxiv.org/abs/2108.05974v1
- Date: Thu, 12 Aug 2021 21:22:06 GMT
- Title: An Operator Splitting View of Federated Learning
- Authors: Saber Malekmohammadi, Kiarash Shaloudegi, Zeou Hu, Yaoliang Yu
- Abstract summary: In the past few years, the learning ($texttFL$) community has witnessed a proliferation of new $texttFL$ algorithms.
We compare different algorithms with ease, to previous convergence results and to uncover new algorithmic variants.
The unification algorithms also leads a way to accelerate $texttFL$ algorithms, without any overhead.
- Score: 23.99238431431463
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Over the past few years, the federated learning ($\texttt{FL}$) community has
witnessed a proliferation of new $\texttt{FL}$ algorithms. However, our
understating of the theory of $\texttt{FL}$ is still fragmented, and a
thorough, formal comparison of these algorithms remains elusive. Motivated by
this gap, we show that many of the existing $\texttt{FL}$ algorithms can be
understood from an operator splitting point of view. This unification allows us
to compare different algorithms with ease, to refine previous convergence
results and to uncover new algorithmic variants. In particular, our analysis
reveals the vital role played by the step size in $\texttt{FL}$ algorithms. The
unification also leads to a streamlined and economic way to accelerate
$\texttt{FL}$ algorithms, without incurring any communication overhead. We
perform numerical experiments on both convex and nonconvex models to validate
our findings.
Related papers
- Perturb-and-Project: Differentially Private Similarities and Marginals [73.98880839337873]
We revisit the input perturbations framework for differential privacy where noise is added to the input $Ain mathcalS$.
We first design novel efficient algorithms to privately release pair-wise cosine similarities.
We derive a novel algorithm to compute $k$-way marginal queries over $n$ features.
arXiv Detail & Related papers (2024-06-07T12:07:16Z) - Efficient Algorithms for Generalized Linear Bandits with Heavy-tailed
Rewards [40.99322897009357]
We propose two novel algorithms based on truncation and mean of medians.
Our truncation-based algorithm supports online learning, distinguishing it from existing truncation-based approaches.
Our algorithms improve the regret bounds by a logarithmic factor compared to existing algorithms when $epsilon=1$.
arXiv Detail & Related papers (2023-10-28T13:01:10Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
We study the problem of PAC learning a linear combination of $k$ ReLU activations under the standard Gaussian distribution on $mathbbRd$ with respect to the square loss.
Our main result is an efficient algorithm for this learning task with sample and computational complexity $(dk/epsilon)O(k)$, whereepsilon>0$ is the target accuracy.
arXiv Detail & Related papers (2023-07-24T14:37:22Z) - Deterministic Nonsmooth Nonconvex Optimization [94.01526844386977]
We show that randomization is necessary to obtain a dimension-free dimension-free algorithm.
Our algorithm yields the first deterministic dimension-free algorithm for optimizing ReLU networks.
arXiv Detail & Related papers (2023-02-16T13:57:19Z) - Differentially-Private Hierarchical Clustering with Provable
Approximation Guarantees [79.59010418610625]
We study differentially private approximation algorithms for hierarchical clustering.
We show strong lower bounds for the problem: that any $epsilon$-DP algorithm must exhibit $O(|V|2/ epsilon)$-additive error for an input dataset.
We propose a private $1+o(1)$ approximation algorithm which also recovers the blocks exactly.
arXiv Detail & Related papers (2023-01-31T19:14:30Z) - Private estimation algorithms for stochastic block models and mixture
models [63.07482515700984]
General tools for designing efficient private estimation algorithms.
First efficient $(epsilon, delta)$-differentially private algorithm for both weak recovery and exact recovery.
arXiv Detail & Related papers (2023-01-11T09:12:28Z) - Randomized Exploration for Reinforcement Learning with General Value
Function Approximation [122.70803181751135]
We propose a model-free reinforcement learning algorithm inspired by the popular randomized least squares value iteration (RLSVI) algorithm.
Our algorithm drives exploration by simply perturbing the training data with judiciously chosen i.i.d. scalar noises.
We complement the theory with an empirical evaluation across known difficult exploration tasks.
arXiv Detail & Related papers (2021-06-15T02:23:07Z) - A new heuristic algorithm for fast k-segmentation [0.0]
Exact and approximate methods for $k$-segmentation exist in the literature.
A novel algorithm is proposed in this paper to improve upon existing methods.
It is empirically found to provide accuracies competitive with exact methods at a fraction of the computational expense.
arXiv Detail & Related papers (2020-09-02T04:50:17Z) - Learning Sparse Classifiers: Continuous and Mixed Integer Optimization
Perspectives [10.291482850329892]
Mixed integer programming (MIP) can be used to solve (to optimality) $ell_0$-regularized regression problems.
We propose two classes of scalable algorithms: an exact algorithm that can handlepapprox 50,000$ features in a few minutes, and approximate algorithms that can address instances with $papprox6$.
In addition, we present new estimation error bounds for $ell$-regularizeds.
arXiv Detail & Related papers (2020-01-17T18:47:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.