Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration
- URL: http://arxiv.org/abs/2108.06038v2
- Date: Wed, 20 Sep 2023 16:45:54 GMT
- Title: Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration
- Authors: Chen Wang, Claudia P\'erez-D'Arpino, Danfei Xu, Li Fei-Fei, C. Karen
Liu, Silvio Savarese
- Abstract summary: We present a method for learning a human-robot collaboration policy from human-human collaboration demonstrations.
Our method co-optimizes a human policy and a robot policy in an interactive learning process.
- Score: 51.268988527778276
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a method for learning a human-robot collaboration policy from
human-human collaboration demonstrations. An effective robot assistant must
learn to handle diverse human behaviors shown in the demonstrations and be
robust when the humans adjust their strategies during online task execution.
Our method co-optimizes a human policy and a robot policy in an interactive
learning process: the human policy learns to generate diverse and plausible
collaborative behaviors from demonstrations while the robot policy learns to
assist by estimating the unobserved latent strategy of its human collaborator.
Across a 2D strategy game, a human-robot handover task, and a multi-step
collaborative manipulation task, our method outperforms the alternatives in
both simulated evaluations and when executing the tasks with a real human
operator in-the-loop. Supplementary materials and videos at
https://sites.google.com/view/co-gail-web/home
Related papers
- Human-Robot Mutual Learning through Affective-Linguistic Interaction and Differential Outcomes Training [Pre-Print] [0.3811184252495269]
We test how affective-linguistic communication, in combination with differential outcomes training, affects mutual learning in a human-robot context.
Taking inspiration from child- caregiver dynamics, our human-robot interaction setup consists of a (simulated) robot attempting to learn how best to communicate internal, homeostatically-controlled needs.
arXiv Detail & Related papers (2024-07-01T13:35:08Z) - Learning Video-Conditioned Policies for Unseen Manipulation Tasks [83.2240629060453]
Video-conditioned Policy learning maps human demonstrations of previously unseen tasks to robot manipulation skills.
We learn our policy to generate appropriate actions given current scene observations and a video of the target task.
We validate our approach on a set of challenging multi-task robot manipulation environments and outperform state of the art.
arXiv Detail & Related papers (2023-05-10T16:25:42Z) - Learning a Universal Human Prior for Dexterous Manipulation from Human
Preference [35.54663426598218]
We propose a framework that learns a universal human prior using direct human preference feedback over videos.
A task-agnostic reward model is trained through iteratively generating diverse polices and collecting human preference over the trajectories.
Our method empirically demonstrates more human-like behaviors on robot hands in diverse tasks including even unseen tasks.
arXiv Detail & Related papers (2023-04-10T14:17:33Z) - Learning Human-to-Robot Handovers from Point Clouds [63.18127198174958]
We propose the first framework to learn control policies for vision-based human-to-robot handovers.
We show significant performance gains over baselines on a simulation benchmark, sim-to-sim transfer and sim-to-real transfer.
arXiv Detail & Related papers (2023-03-30T17:58:36Z) - HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
We show that manipulation skills can be transferred from a human to a robot through the use of micro-evolutionary reinforcement learning.
We propose an algorithm for multi-dimensional evolution path searching that allows joint optimization of both the robot evolution path and the policy.
arXiv Detail & Related papers (2022-12-08T15:56:13Z) - Coordination with Humans via Strategy Matching [5.072077366588174]
We present an algorithm for autonomously recognizing available task-completion strategies by observing human-human teams performing a collaborative task.
By transforming team actions into low dimensional representations using hidden Markov models, we can identify strategies without prior knowledge.
Robot policies are learned on each of the identified strategies to construct a Mixture-of-Experts model that adapts to the task strategies of unseen human partners.
arXiv Detail & Related papers (2022-10-27T01:00:50Z) - Human-to-Robot Imitation in the Wild [50.49660984318492]
We propose an efficient one-shot robot learning algorithm, centered around learning from a third-person perspective.
We show one-shot generalization and success in real-world settings, including 20 different manipulation tasks in the wild.
arXiv Detail & Related papers (2022-07-19T17:59:59Z) - Joint Mind Modeling for Explanation Generation in Complex Human-Robot
Collaborative Tasks [83.37025218216888]
We propose a novel explainable AI (XAI) framework for achieving human-like communication in human-robot collaborations.
The robot builds a hierarchical mind model of the human user and generates explanations of its own mind as a form of communications.
Results show that the generated explanations of our approach significantly improves the collaboration performance and user perception of the robot.
arXiv Detail & Related papers (2020-07-24T23:35:03Z) - Learn Task First or Learn Human Partner First: A Hierarchical Task
Decomposition Method for Human-Robot Cooperation [11.387868752604986]
This work proposes a novel task decomposition method with a hierarchical reward mechanism that enables the robot to learn the hierarchical dynamic control task separately from learning the human partner's behavior.
The results show that the robot should learn the task first to achieve higher team performance and learn the human first to achieve higher learning efficiency.
arXiv Detail & Related papers (2020-03-01T04:41:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.