Human-Robot Mutual Learning through Affective-Linguistic Interaction and Differential Outcomes Training [Pre-Print]
- URL: http://arxiv.org/abs/2407.01280v1
- Date: Mon, 1 Jul 2024 13:35:08 GMT
- Title: Human-Robot Mutual Learning through Affective-Linguistic Interaction and Differential Outcomes Training [Pre-Print]
- Authors: Emilia Heikkinen, Elsa Silvennoinen, Imran Khan, Zakaria Lemhaouri, Laura Cohen, Lola CaƱamero, Robert Lowe,
- Abstract summary: We test how affective-linguistic communication, in combination with differential outcomes training, affects mutual learning in a human-robot context.
Taking inspiration from child- caregiver dynamics, our human-robot interaction setup consists of a (simulated) robot attempting to learn how best to communicate internal, homeostatically-controlled needs.
- Score: 0.3811184252495269
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Owing to the recent success of Large Language Models, Modern A.I has been much focused on linguistic interactions with humans but less focused on non-linguistic forms of communication between man and machine. In the present paper, we test how affective-linguistic communication, in combination with differential outcomes training, affects mutual learning in a human-robot context. Taking inspiration from child-caregiver dynamics, our human-robot interaction setup consists of a (simulated) robot attempting to learn how best to communicate internal, homeostatically-controlled needs; while a human "caregiver" attempts to learn the correct object to satisfy the robot's present communicated need. We studied the effects of i) human training type, and ii) robot reinforcement learning type, to assess mutual learning terminal accuracy and rate of learning (as measured by the average reward achieved by the robot). Our results find mutual learning between a human and a robot is significantly improved with Differential Outcomes Training (DOT) compared to Non-DOT (control) conditions. We find further improvements when the robot uses an exploration-exploitation policy selection, compared to purely exploitation policy selection. These findings have implications for utilizing socially assistive robots (SAR) in therapeutic contexts, e.g. for cognitive interventions, and educational applications.
Related papers
- On the Effect of Robot Errors on Human Teaching Dynamics [1.7249361224827533]
We investigate how the presence and severity of robot errors affect three dimensions of human teaching dynamics.
Results show that people tend to spend more time teaching robots with errors.
Our findings offer valuable insights for designing effective interfaces for interactive learning.
arXiv Detail & Related papers (2024-09-15T19:02:34Z) - Learning Multimodal Latent Dynamics for Human-Robot Interaction [19.803547418450236]
This article presents a method for learning well-coordinated Human-Robot Interaction (HRI) from Human-Human Interactions (HHI)
We devise a hybrid approach using Hidden Markov Models (HMMs) as the latent space priors for a Variational Autoencoder to model a joint distribution over the interacting agents.
We find that Users perceive our method as more human-like, timely, and accurate and rank our method with a higher degree of preference over other baselines.
arXiv Detail & Related papers (2023-11-27T23:56:59Z) - Real-time Addressee Estimation: Deployment of a Deep-Learning Model on
the iCub Robot [52.277579221741746]
Addressee Estimation is a skill essential for social robots to interact smoothly with humans.
Inspired by human perceptual skills, a deep-learning model for Addressee Estimation is designed, trained, and deployed on an iCub robot.
The study presents the procedure of such implementation and the performance of the model deployed in real-time human-robot interaction.
arXiv Detail & Related papers (2023-11-09T13:01:21Z) - A Human-Robot Mutual Learning System with Affect-Grounded Language
Acquisition and Differential Outcomes Training [0.1812164955222814]
The paper presents a novel human-robot interaction setup for identifying robot homeostatic needs.
We adopted a differential outcomes training protocol whereby the robot provides feedback specific to its internal needs.
We found evidence that DOT can enhance the human's learning efficiency, which in turn enables more efficient robot language acquisition.
arXiv Detail & Related papers (2023-10-20T09:41:31Z) - Incremental Learning of Humanoid Robot Behavior from Natural Interaction and Large Language Models [23.945922720555146]
We propose a system to achieve incremental learning of complex behavior from natural interaction.
We integrate the system in the robot cognitive architecture of the humanoid robot ARMAR-6.
arXiv Detail & Related papers (2023-09-08T13:29:05Z) - "No, to the Right" -- Online Language Corrections for Robotic
Manipulation via Shared Autonomy [70.45420918526926]
We present LILAC, a framework for incorporating and adapting to natural language corrections online during execution.
Instead of discrete turn-taking between a human and robot, LILAC splits agency between the human and robot.
We show that our corrections-aware approach obtains higher task completion rates, and is subjectively preferred by users.
arXiv Detail & Related papers (2023-01-06T15:03:27Z) - HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
We show that manipulation skills can be transferred from a human to a robot through the use of micro-evolutionary reinforcement learning.
We propose an algorithm for multi-dimensional evolution path searching that allows joint optimization of both the robot evolution path and the policy.
arXiv Detail & Related papers (2022-12-08T15:56:13Z) - Continuous ErrP detections during multimodal human-robot interaction [2.5199066832791535]
We implement a multimodal human-robot interaction (HRI) scenario, in which a simulated robot communicates with its human partner through speech and gestures.
The human partner, in turn, evaluates whether the robot's verbal announcement (intention) matches the action (pointing gesture) chosen by the robot.
In intrinsic evaluations of robot actions by humans, evident in the EEG, were recorded in real time, continuously segmented online and classified asynchronously.
arXiv Detail & Related papers (2022-07-25T15:39:32Z) - Data-driven emotional body language generation for social robotics [58.88028813371423]
In social robotics, endowing humanoid robots with the ability to generate bodily expressions of affect can improve human-robot interaction and collaboration.
We implement a deep learning data-driven framework that learns from a few hand-designed robotic bodily expressions.
The evaluation study found that the anthropomorphism and animacy of the generated expressions are not perceived differently from the hand-designed ones.
arXiv Detail & Related papers (2022-05-02T09:21:39Z) - Revisiting the Adversarial Robustness-Accuracy Tradeoff in Robot
Learning [121.9708998627352]
Recent work has shown that, in practical robot learning applications, the effects of adversarial training do not pose a fair trade-off.
This work revisits the robustness-accuracy trade-off in robot learning by analyzing if recent advances in robust training methods and theory can make adversarial training suitable for real-world robot applications.
arXiv Detail & Related papers (2022-04-15T08:12:15Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
The ability to recognize human partners is an important social skill to build personalized and long-term human-robot interactions.
Deep learning networks have achieved state-of-the-art results and demonstrated to be suitable tools to address such a task.
One solution is to make robots learn from their first-hand sensory data with self-supervision.
arXiv Detail & Related papers (2021-03-16T13:50:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.