Context Aware Object Geotagging
- URL: http://arxiv.org/abs/2108.06302v1
- Date: Fri, 13 Aug 2021 16:16:20 GMT
- Title: Context Aware Object Geotagging
- Authors: Chao-Jung Liu, Matej Ulicny, Michael Manzke and Rozenn Dahyot
- Abstract summary: We propose an approach to improve asset geolocation from street view imagery using Structure from Motion.
The predicted object geolocation is further refined by imposing contextual geographic information extracted from OpenStreetMap.
- Score: 2.4674307340652297
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Localization of street objects from images has gained a lot of attention in
recent years. We propose an approach to improve asset geolocation from street
view imagery by enhancing the quality of the metadata associated with the
images using Structure from Motion. The predicted object geolocation is further
refined by imposing contextual geographic information extracted from
OpenStreetMap. Our pipeline is validated experimentally against the state of
the art approaches for geotagging traffic lights.
Related papers
- Swarm Intelligence in Geo-Localization: A Multi-Agent Large Vision-Language Model Collaborative Framework [51.26566634946208]
We introduce smileGeo, a novel visual geo-localization framework.
By inter-agent communication, smileGeo integrates the inherent knowledge of these agents with additional retrieved information.
Results show that our approach significantly outperforms current state-of-the-art methods.
arXiv Detail & Related papers (2024-08-21T03:31:30Z) - GeoCLIP: Clip-Inspired Alignment between Locations and Images for
Effective Worldwide Geo-localization [61.10806364001535]
Worldwide Geo-localization aims to pinpoint the precise location of images taken anywhere on Earth.
Existing approaches divide the globe into discrete geographic cells, transforming the problem into a classification task.
We propose GeoCLIP, a novel CLIP-inspired Image-to-GPS retrieval approach that enforces alignment between the image and its corresponding GPS locations.
arXiv Detail & Related papers (2023-09-27T20:54:56Z) - Cross-View Visual Geo-Localization for Outdoor Augmented Reality [11.214903134756888]
We address the problem of geo-pose estimation by cross-view matching of query ground images to a geo-referenced aerial satellite image database.
We propose a new transformer neural network-based model and a modified triplet ranking loss for joint location and orientation estimation.
Experiments on several benchmark cross-view geo-localization datasets show that our model achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-03-28T01:58:03Z) - Where We Are and What We're Looking At: Query Based Worldwide Image
Geo-localization Using Hierarchies and Scenes [53.53712888703834]
We introduce an end-to-end transformer-based architecture that exploits the relationship between different geographic levels.
We achieve state of the art street level accuracy on 4 standard geo-localization datasets.
arXiv Detail & Related papers (2023-03-07T21:47:58Z) - G^3: Geolocation via Guidebook Grounding [92.46774241823562]
We study explicit knowledge from human-written guidebooks that describe the salient and class-discriminative visual features humans use for geolocation.
We propose the task of Geolocation via Guidebook Grounding that uses a dataset of StreetView images from a diverse set of locations.
Our approach substantially outperforms a state-of-the-art image-only geolocation method, with an improvement of over 5% in Top-1 accuracy.
arXiv Detail & Related papers (2022-11-28T16:34:40Z) - Revisiting Near/Remote Sensing with Geospatial Attention [24.565068569913382]
This work addresses the task of overhead image segmentation when auxiliary ground-level images are available.
Recent work has shown that performing joint inference over these two modalities, often called near/remote sensing, can yield significant accuracy improvements.
We introduce the concept of geospatial attention, a geometry-aware attention mechanism that explicitly considers the geospatial relationship between the pixels in a ground-level image and a geographic location.
arXiv Detail & Related papers (2022-04-04T19:19:50Z) - Accurate 3-DoF Camera Geo-Localization via Ground-to-Satellite Image
Matching [102.39635336450262]
We address the problem of ground-to-satellite image geo-localization by matching a query image captured at the ground level against a large-scale database with geotagged satellite images.
Our new method is able to achieve the fine-grained location of a query image, up to pixel size precision of the satellite image.
arXiv Detail & Related papers (2022-03-26T20:10:38Z) - Visual and Object Geo-localization: A Comprehensive Survey [11.120155713865918]
Geo-localization refers to the process of determining where on earth some entity' is located.
This paper provides a comprehensive survey of geo-localization involving images, which involves either determining from where an image has been captured (Image geo-localization) or geo-locating objects within an image (Object geo-localization)
We will provide an in-depth study, including a summary of popular algorithms, a description of proposed datasets, and an analysis of performance results to illustrate the current state of each field.
arXiv Detail & Related papers (2021-12-30T20:46:53Z) - Self-supervised Segmentation via Background Inpainting [96.10971980098196]
We introduce a self-supervised detection and segmentation approach that can work with single images captured by a potentially moving camera.
We exploit a self-supervised loss function that we exploit to train a proposal-based segmentation network.
We apply our method to human detection and segmentation in images that visually depart from those of standard benchmarks and outperform existing self-supervised methods.
arXiv Detail & Related papers (2020-11-11T08:34:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.