Swarm Intelligence in Geo-Localization: A Multi-Agent Large Vision-Language Model Collaborative Framework
- URL: http://arxiv.org/abs/2408.11312v3
- Date: Tue, 15 Oct 2024 06:16:00 GMT
- Title: Swarm Intelligence in Geo-Localization: A Multi-Agent Large Vision-Language Model Collaborative Framework
- Authors: Xiao Han, Chen Zhu, Xiangyu Zhao, Hengshu Zhu,
- Abstract summary: We introduce smileGeo, a novel visual geo-localization framework.
By inter-agent communication, smileGeo integrates the inherent knowledge of these agents with additional retrieved information.
Results show that our approach significantly outperforms current state-of-the-art methods.
- Score: 51.26566634946208
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual geo-localization demands in-depth knowledge and advanced reasoning skills to associate images with precise real-world geographic locations. Existing image database retrieval methods are limited by the impracticality of storing sufficient visual records of global landmarks. Recently, Large Vision-Language Models (LVLMs) have demonstrated the capability of geo-localization through Visual Question Answering (VQA), enabling a solution that does not require external geo-tagged image records. However, the performance of a single LVLM is still limited by its intrinsic knowledge and reasoning capabilities. To address these challenges, we introduce smileGeo, a novel visual geo-localization framework that leverages multiple Internet-enabled LVLM agents operating within an agent-based architecture. By facilitating inter-agent communication, smileGeo integrates the inherent knowledge of these agents with additional retrieved information, enhancing the ability to effectively localize images. Furthermore, our framework incorporates a dynamic learning strategy that optimizes agent communication, reducing redundant interactions and enhancing overall system efficiency. To validate the effectiveness of the proposed framework, we conducted experiments on three different datasets, and the results show that our approach significantly outperforms current state-of-the-art methods. The source code is available at https://anonymous.4open.science/r/ViusalGeoLocalization-F8F5.
Related papers
- An LLM Agent for Automatic Geospatial Data Analysis [5.842462214442362]
Large language models (LLMs) are being used in data science code generation tasks.
Their application to geospatial data processing is challenging due to difficulties in incorporating complex data structures and spatial constraints.
We introduce GeoAgent, a new interactive framework designed to help LLMs handle geospatial data processing more effectively.
arXiv Detail & Related papers (2024-10-24T14:47:25Z) - Image-Based Geolocation Using Large Vision-Language Models [19.071551941682063]
We introduce tool, an innovative framework that significantly enhances image-based geolocation accuracy.
tool employs a systematic chain-of-thought (CoT) approach, mimicking human geoguessing strategies.
It achieves an impressive average score of 4550.5 in the GeoGuessr game, with an 85.37% win rate, and delivers highly precise geolocation predictions.
arXiv Detail & Related papers (2024-08-18T13:39:43Z) - GOMAA-Geo: GOal Modality Agnostic Active Geo-localization [49.599465495973654]
We consider the task of active geo-localization (AGL) in which an agent uses a sequence of visual cues observed during aerial navigation to find a target specified through multiple possible modalities.
GOMAA-Geo is a goal modality active geo-localization agent for zero-shot generalization between different goal modalities.
arXiv Detail & Related papers (2024-06-04T02:59:36Z) - ProGEO: Generating Prompts through Image-Text Contrastive Learning for Visual Geo-localization [0.0]
We propose a two-stage training method to enhance visual performance and use contrastive learning to mine challenging samples.
We validate the effectiveness of the proposed strategy on several large-scale visual geo-localization datasets.
arXiv Detail & Related papers (2024-06-04T02:28:51Z) - Probing Multimodal Large Language Models for Global and Local Semantic Representations [57.25949445963422]
We study which layers of Multimodal Large Language Models make the most effort to the global image information.
In this study, we find that the intermediate layers of models can encode more global semantic information.
We find that the topmost layers may excessively focus on local information, leading to a diminished ability to encode global information.
arXiv Detail & Related papers (2024-02-27T08:27:15Z) - CurriculumLoc: Enhancing Cross-Domain Geolocalization through
Multi-Stage Refinement [11.108860387261508]
Visual geolocalization is a cost-effective and scalable task that involves matching one or more query images taken at some unknown location, to a set of geo-tagged reference images.
We develop CurriculumLoc, a novel keypoint detection and description with global semantic awareness and a local geometric verification.
We achieve new high recall@1 scores of 62.6% and 94.5% on ALTO, with two different distances metrics, respectively.
arXiv Detail & Related papers (2023-11-20T08:40:01Z) - GeoLLM: Extracting Geospatial Knowledge from Large Language Models [49.20315582673223]
We present GeoLLM, a novel method that can effectively extract geospatial knowledge from large language models.
We demonstrate the utility of our approach across multiple tasks of central interest to the international community, including the measurement of population density and economic livelihoods.
Our experiments reveal that LLMs are remarkably sample-efficient, rich in geospatial information, and robust across the globe.
arXiv Detail & Related papers (2023-10-10T00:03:23Z) - GeoCLIP: Clip-Inspired Alignment between Locations and Images for
Effective Worldwide Geo-localization [61.10806364001535]
Worldwide Geo-localization aims to pinpoint the precise location of images taken anywhere on Earth.
Existing approaches divide the globe into discrete geographic cells, transforming the problem into a classification task.
We propose GeoCLIP, a novel CLIP-inspired Image-to-GPS retrieval approach that enforces alignment between the image and its corresponding GPS locations.
arXiv Detail & Related papers (2023-09-27T20:54:56Z) - Visual and Object Geo-localization: A Comprehensive Survey [11.120155713865918]
Geo-localization refers to the process of determining where on earth some entity' is located.
This paper provides a comprehensive survey of geo-localization involving images, which involves either determining from where an image has been captured (Image geo-localization) or geo-locating objects within an image (Object geo-localization)
We will provide an in-depth study, including a summary of popular algorithms, a description of proposed datasets, and an analysis of performance results to illustrate the current state of each field.
arXiv Detail & Related papers (2021-12-30T20:46:53Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
We propose a Multi-level Graph Convolutional Network (GCN) with Automatic Graph Learning method (MGCN-AGL) for HSI classification.
By employing attention mechanism to characterize the importance among spatially neighboring regions, the most relevant information can be adaptively incorporated to make decisions.
Our MGCN-AGL encodes the long range dependencies among image regions based on the expressive representations that have been produced at local level.
arXiv Detail & Related papers (2020-09-19T09:26:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.