Towards Efficient Point Cloud Graph Neural Networks Through
Architectural Simplification
- URL: http://arxiv.org/abs/2108.06317v1
- Date: Fri, 13 Aug 2021 17:04:54 GMT
- Title: Towards Efficient Point Cloud Graph Neural Networks Through
Architectural Simplification
- Authors: Shyam A. Tailor, Ren\'{e} de Jong, Tiago Azevedo, Matthew Mattina,
Partha Maji
- Abstract summary: We make a step towards improving the efficiency of graph neural network (GNN) models by making the observation that these GNN models are heavily limited by the representational power of their first, feature extracting, layer.
We find that it is possible to radically simplify these models so long as the feature extraction layer is retained with minimal degradation to model performance.
Our approach reduces memory consumption by 20$times$ and latency by up to 9.9$times$ for graph layers in models such as DGCNN; overall, we achieve speed-ups of up to 4.5$times$ and peak memory reductions of
- Score: 8.062534763028808
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years graph neural network (GNN)-based approaches have become a
popular strategy for processing point cloud data, regularly achieving
state-of-the-art performance on a variety of tasks. To date, the research
community has primarily focused on improving model expressiveness, with
secondary thought given to how to design models that can run efficiently on
resource constrained mobile devices including smartphones or mixed reality
headsets. In this work we make a step towards improving the efficiency of these
models by making the observation that these GNN models are heavily limited by
the representational power of their first, feature extracting, layer. We find
that it is possible to radically simplify these models so long as the feature
extraction layer is retained with minimal degradation to model performance;
further, we discover that it is possible to improve performance overall on
ModelNet40 and S3DIS by improving the design of the feature extractor. Our
approach reduces memory consumption by 20$\times$ and latency by up to
9.9$\times$ for graph layers in models such as DGCNN; overall, we achieve
speed-ups of up to 4.5$\times$ and peak memory reductions of 72.5%.
Related papers
- The Importance of Being Scalable: Improving the Speed and Accuracy of Neural Network Interatomic Potentials Across Chemical Domains [4.340917737559795]
We study scaling in Neural Network Interatomic Potentials (NNIPs)
NNIPs act as surrogate models for ab initio quantum mechanical calculations.
We develop an NNIP architecture designed for scaling: the Efficiently Scaled Attention Interatomic Potential (EScAIP)
arXiv Detail & Related papers (2024-10-31T17:35:57Z) - LeYOLO, New Scalable and Efficient CNN Architecture for Object Detection [0.0]
We focus on design choices of neural network architectures for efficient object detection based on FLOP.
We propose several optimizations to enhance the efficiency of YOLO-based models.
This paper contributes to a new scaling paradigm for object detection and YOLO-centric models called LeYOLO.
arXiv Detail & Related papers (2024-06-20T12:08:24Z) - Network architecture search of X-ray based scientific applications [4.8287663496299755]
X-ray and electron diffraction-based microscopy use bragg peak detection and ptychography to perform 3-D imaging at an atomic resolution.
Recently, the use of deep neural networks has improved the existing state-of-the-art approaches.
arXiv Detail & Related papers (2024-04-16T16:09:38Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - A-SDM: Accelerating Stable Diffusion through Redundancy Removal and
Performance Optimization [54.113083217869516]
In this work, we first explore the computational redundancy part of the network.
We then prune the redundancy blocks of the model and maintain the network performance.
Thirdly, we propose a global-regional interactive (GRI) attention to speed up the computationally intensive attention part.
arXiv Detail & Related papers (2023-12-24T15:37:47Z) - Receptive Field Refinement for Convolutional Neural Networks Reliably
Improves Predictive Performance [1.52292571922932]
We present a new approach to receptive field analysis that can yield these types of theoretical and empirical performance gains.
Our approach is able to improve ImageNet1K performance across a wide range of well-known, state-of-the-art (SOTA) model classes.
arXiv Detail & Related papers (2022-11-26T05:27:44Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
We show that pruning improves generalization for neural ODEs in generative modeling.
We also show that pruning finds minimal and efficient neural ODE representations with up to 98% less parameters compared to the original network, without loss of accuracy.
arXiv Detail & Related papers (2021-06-24T01:40:17Z) - Top-KAST: Top-K Always Sparse Training [50.05611544535801]
We propose Top-KAST, a method that preserves constant sparsity throughout training.
We show that it performs comparably to or better than previous works when training models on the established ImageNet benchmark.
In addition to our ImageNet results, we also demonstrate our approach in the domain of language modeling.
arXiv Detail & Related papers (2021-06-07T11:13:05Z) - The Untapped Potential of Off-the-Shelf Convolutional Neural Networks [29.205446247063673]
We show that existing off-the-shelf models like ResNet-50 are capable of over 95% accuracy on ImageNet.
This level of performance currently exceeds that of models with over 20x more parameters and significantly more complex training procedures.
arXiv Detail & Related papers (2021-03-17T20:04:46Z) - Towards Practical Lipreading with Distilled and Efficient Models [57.41253104365274]
Lipreading has witnessed a lot of progress due to the resurgence of neural networks.
Recent works have placed emphasis on aspects such as improving performance by finding the optimal architecture or improving generalization.
There is still a significant gap between the current methodologies and the requirements for an effective deployment of lipreading in practical scenarios.
We propose a series of innovations that significantly bridge that gap: first, we raise the state-of-the-art performance by a wide margin on LRW and LRW-1000 to 88.5% and 46.6%, respectively using self-distillation.
arXiv Detail & Related papers (2020-07-13T16:56:27Z) - Dynamic Model Pruning with Feedback [64.019079257231]
We propose a novel model compression method that generates a sparse trained model without additional overhead.
We evaluate our method on CIFAR-10 and ImageNet, and show that the obtained sparse models can reach the state-of-the-art performance of dense models.
arXiv Detail & Related papers (2020-06-12T15:07:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.