Lightweight Remote Sensing Scene Classification on Edge Devices via Knowledge Distillation and Early-exit
- URL: http://arxiv.org/abs/2507.20623v1
- Date: Mon, 28 Jul 2025 08:36:36 GMT
- Title: Lightweight Remote Sensing Scene Classification on Edge Devices via Knowledge Distillation and Early-exit
- Authors: Yang Zhao, Shusheng Li, Xueshang Feng,
- Abstract summary: We propose a lightweight RSSC framework, which includes a distilled global filter network (GFNet) model and an early-exit mechanism designed for edge devices.<n>We evaluate our E3C model on three edge devices across four datasets.<n>It achieves an average of 1.3x speedup on model inference and over 40% improvement on energy efficiency, while maintaining high classification accuracy.
- Score: 9.227971758519818
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As the development of lightweight deep learning algorithms, various deep neural network (DNN) models have been proposed for the remote sensing scene classification (RSSC) application. However, it is still challenging for these RSSC models to achieve optimal performance among model accuracy, inference latency, and energy consumption on resource-constrained edge devices. In this paper, we propose a lightweight RSSC framework, which includes a distilled global filter network (GFNet) model and an early-exit mechanism designed for edge devices to achieve state-of-the-art performance. Specifically, we first apply frequency domain distillation on the GFNet model to reduce model size. Then we design a dynamic early-exit model tailored for DNN models on edge devices to further improve model inference efficiency. We evaluate our E3C model on three edge devices across four datasets. Extensive experimental results show that it achieves an average of 1.3x speedup on model inference and over 40% improvement on energy efficiency, while maintaining high classification accuracy.
Related papers
- A Light Perspective for 3D Object Detection [46.23578780480946]
This paper introduces a novel approach that incorporates cutting-edge Deep Learning techniques into the feature extraction process.<n>Our model, NextBEV, surpasses established feature extractors like ResNet50 and MobileNetV3.<n>By fusing these lightweight proposals, we have enhanced the accuracy of the VoxelNet-based model by 2.93% and improved the F1-score of the PointPillar-based model by approximately 20%.
arXiv Detail & Related papers (2025-03-10T10:03:23Z) - Efficient Partitioning Vision Transformer on Edge Devices for Distributed Inference [13.533267828812455]
We propose a novel framework, ED-ViT, which is designed to efficiently split and execute complex Vision Transformers across multiple edge devices.<n>Our approach involves partitioning Vision Transformer models into several sub-models, while each dedicated to handling a specific subset of data classes.<n>We demonstrate that our method significantly cuts down inference latency on edge devices and achieves a reduction in model size by up to 28.9 times and 34.1 times, respectively.
arXiv Detail & Related papers (2024-10-15T14:38:14Z) - DM3D: Distortion-Minimized Weight Pruning for Lossless 3D Object Detection [42.07920565812081]
We propose a novel post-training weight pruning scheme for 3D object detection.
It determines redundant parameters in the pretrained model that lead to minimal distortion in both locality and confidence.
This framework aims to minimize detection distortion of network output to maximally maintain detection precision.
arXiv Detail & Related papers (2024-07-02T09:33:32Z) - LeYOLO, New Embedded Architecture for Object Detection [0.0]
We introduce two key contributions to object detection models using MSCOCO as a base validation set.<n>First, we propose LeNeck, a general-purpose detection framework that maintains inference speed comparable to SSDLite.<n>Second, we present LeYOLO, an efficient object detection model designed to enhance computational efficiency in YOLO-based architectures.
arXiv Detail & Related papers (2024-06-20T12:08:24Z) - Towards Robust and Efficient Cloud-Edge Elastic Model Adaptation via Selective Entropy Distillation [56.79064699832383]
We establish a Cloud-Edge Elastic Model Adaptation (CEMA) paradigm in which the edge models only need to perform forward propagation.
In our CEMA, to reduce the communication burden, we devise two criteria to exclude unnecessary samples from uploading to the cloud.
arXiv Detail & Related papers (2024-02-27T08:47:19Z) - Real-time Human Detection Model for Edge Devices [0.0]
Convolutional Neural Networks (CNNs) have replaced traditional feature extraction and machine learning models in detection and classification tasks.
Lightweight CNN models have been recently introduced for real-time tasks.
This paper suggests a CNN-based lightweight model that can fit on a limited edge device such as Raspberry Pi.
arXiv Detail & Related papers (2021-11-20T18:42:17Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
We propose a time estimation framework to decouple the architectural search from the target hardware.
The proposed methodology extracts a set of models from micro- kernel and multi-layer benchmarks and generates a stacked model for mapping and network execution time estimation.
We compare estimation accuracy and fidelity of the generated mixed models, statistical models with the roofline model, and a refined roofline model for evaluation.
arXiv Detail & Related papers (2021-05-07T11:39:05Z) - Local Grid Rendering Networks for 3D Object Detection in Point Clouds [98.02655863113154]
CNNs are powerful but it would be computationally costly to directly apply convolutions on point data after voxelizing the entire point clouds to a dense regular 3D grid.
We propose a novel and principled Local Grid Rendering (LGR) operation to render the small neighborhood of a subset of input points into a low-resolution 3D grid independently.
We validate LGR-Net for 3D object detection on the challenging ScanNet and SUN RGB-D datasets.
arXiv Detail & Related papers (2020-07-04T13:57:43Z) - A Privacy-Preserving-Oriented DNN Pruning and Mobile Acceleration
Framework [56.57225686288006]
Weight pruning of deep neural networks (DNNs) has been proposed to satisfy the limited storage and computing capability of mobile edge devices.
Previous pruning methods mainly focus on reducing the model size and/or improving performance without considering the privacy of user data.
We propose a privacy-preserving-oriented pruning and mobile acceleration framework that does not require the private training dataset.
arXiv Detail & Related papers (2020-03-13T23:52:03Z) - An Image Enhancing Pattern-based Sparsity for Real-time Inference on
Mobile Devices [58.62801151916888]
We introduce a new sparsity dimension, namely pattern-based sparsity that comprises pattern and connectivity sparsity, and becoming both highly accurate and hardware friendly.
Our approach on the new pattern-based sparsity naturally fits into compiler optimization for highly efficient DNN execution on mobile platforms.
arXiv Detail & Related papers (2020-01-20T16:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.