Optimal and Efficient Algorithms for General Mixable Losses against
Switching Oracles
- URL: http://arxiv.org/abs/2108.06411v1
- Date: Fri, 13 Aug 2021 21:48:55 GMT
- Title: Optimal and Efficient Algorithms for General Mixable Losses against
Switching Oracles
- Authors: Kaan Gokcesu, Hakan Gokcesu
- Abstract summary: We study the online optimization of mixable loss functions in a dynamic environment.
Our results are guaranteed to hold in a strong deterministic sense in an individual sequence manner.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the problem of online learning, which has gained significant
attention in recent years due to its applicability in a wide range of fields
from machine learning to game theory. Specifically, we study the online
optimization of mixable loss functions in a dynamic environment. We introduce
online mixture schemes that asymptotically achieves the performance of the best
dynamic estimation sequence of the switching oracle with optimal regret
redundancies. The best dynamic estimation sequence that we compete against is
selected in hindsight with full observation of the loss functions and is
allowed to select different optimal estimations in different time intervals
(segments). We propose two mixtures in our work. Firstly, we propose a
tractable polynomial time complexity algorithm that can achieve the optimal
redundancy of the intractable brute force approach. Secondly, we propose an
efficient logarithmic time complexity algorithm that can achieve the optimal
redundancy up to a constant multiplicity gap. Our results are guaranteed to
hold in a strong deterministic sense in an individual sequence manner.
Related papers
- SequentialAttention++ for Block Sparsification: Differentiable Pruning
Meets Combinatorial Optimization [24.55623897747344]
Neural network pruning is a key technique towards engineering large yet scalable, interpretable, generalizable models.
We show how many existing differentiable pruning techniques can be understood as non regularization for group sparse optimization.
We propose SequentialAttention++, which advances state the art in large-scale neural network block-wise pruning tasks on the ImageNet and Criteo datasets.
arXiv Detail & Related papers (2024-02-27T21:42:18Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - An Expandable Machine Learning-Optimization Framework to Sequential
Decision-Making [0.0]
We present an integrated prediction-optimization (PredOpt) framework to efficiently solve sequential decision-making problems.
We address the key issues of sequential dependence, infeasibility, and generalization in machine learning (ML) to make predictions for optimal solutions to instances problems.
arXiv Detail & Related papers (2023-11-12T21:54:53Z) - Federated Multi-Level Optimization over Decentralized Networks [55.776919718214224]
We study the problem of distributed multi-level optimization over a network, where agents can only communicate with their immediate neighbors.
We propose a novel gossip-based distributed multi-level optimization algorithm that enables networked agents to solve optimization problems at different levels in a single timescale.
Our algorithm achieves optimal sample complexity, scaling linearly with the network size, and demonstrates state-of-the-art performance on various applications.
arXiv Detail & Related papers (2023-10-10T00:21:10Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
We exploit between first-order algorithms for constrained optimization and non-smooth systems to design a new class of accelerated first-order algorithms.
An important property of these algorithms is that constraints are expressed in terms of velocities instead of sparse variables.
arXiv Detail & Related papers (2023-02-01T08:50:48Z) - Learning to Schedule Heuristics for the Simultaneous Stochastic
Optimization of Mining Complexes [2.538209532048867]
The proposed learn-to-perturb (L2P) hyper-heuristic is a multi-neighborhood simulated annealing algorithm.
L2P is tested on several real-world mining complexes, with an emphasis on efficiency, robustness, and generalization capacity.
Results show a reduction in the number of iterations by 30-50% and in the computational time by 30-45%.
arXiv Detail & Related papers (2022-02-25T18:20:14Z) - Adaptivity and Non-stationarity: Problem-dependent Dynamic Regret for Online Convex Optimization [70.4342220499858]
We introduce novel online algorithms that can exploit smoothness and replace the dependence on $T$ in dynamic regret with problem-dependent quantities.
Our results are adaptive to the intrinsic difficulty of the problem, since the bounds are tighter than existing results for easy problems and safeguard the same rate in the worst case.
arXiv Detail & Related papers (2021-12-29T02:42:59Z) - Near-Linear Time Algorithm with Near-Logarithmic Regret Per Switch for
Mixable/Exp-Concave Losses [0.0]
We study the online optimization of mixable loss functions with logarithmic static regret in a dynamic environment.
For the first time in literature, we show that it is also possible to achieve near-logarithmic regret per switch with sub-polynomial complexity per time.
arXiv Detail & Related papers (2021-09-28T15:06:31Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.