Adaptivity and Non-stationarity: Problem-dependent Dynamic Regret for Online Convex Optimization
- URL: http://arxiv.org/abs/2112.14368v3
- Date: Sun, 7 Apr 2024 06:50:01 GMT
- Title: Adaptivity and Non-stationarity: Problem-dependent Dynamic Regret for Online Convex Optimization
- Authors: Peng Zhao, Yu-Jie Zhang, Lijun Zhang, Zhi-Hua Zhou,
- Abstract summary: We introduce novel online algorithms that can exploit smoothness and replace the dependence on $T$ in dynamic regret with problem-dependent quantities.
Our results are adaptive to the intrinsic difficulty of the problem, since the bounds are tighter than existing results for easy problems and safeguard the same rate in the worst case.
- Score: 70.4342220499858
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate online convex optimization in non-stationary environments and choose dynamic regret as the performance measure, defined as the difference between cumulative loss incurred by the online algorithm and that of any feasible comparator sequence. Let $T$ be the time horizon and $P_T$ be the path length that essentially reflects the non-stationarity of environments, the state-of-the-art dynamic regret is $\mathcal{O}(\sqrt{T(1+P_T)})$. Although this bound is proved to be minimax optimal for convex functions, in this paper, we demonstrate that it is possible to further enhance the guarantee for some easy problem instances, particularly when online functions are smooth. Specifically, we introduce novel online algorithms that can exploit smoothness and replace the dependence on $T$ in dynamic regret with problem-dependent quantities: the variation in gradients of loss functions, the cumulative loss of the comparator sequence, and the minimum of these two terms. These quantities are at most $\mathcal{O}(T)$ while could be much smaller in benign environments. Therefore, our results are adaptive to the intrinsic difficulty of the problem, since the bounds are tighter than existing results for easy problems and meanwhile safeguard the same rate in the worst case. Notably, our proposed algorithms can achieve favorable dynamic regret with only one gradient per iteration, sharing the same gradient query complexity as the static regret minimization methods. To accomplish this, we introduce the collaborative online ensemble framework. The proposed framework employs a two-layer online ensemble to handle non-stationarity, and uses optimistic online learning and further introduces crucial correction terms to enable effective collaboration within the meta-base two layers, thereby attaining adaptivity. We believe the framework can be useful for broader problems.
Related papers
- An Equivalence Between Static and Dynamic Regret Minimization [10.812831455376218]
We show that for linear losses, dynamic regret minimization is equivalent to static regret minimization in an extended decision space.
We provide an algorithm guaranteeing dynamic regret of the form $R_T(u_1,dots,u_T)le tilde.
arXiv Detail & Related papers (2024-06-03T17:54:58Z) - Improving Adaptive Online Learning Using Refined Discretization [44.646191058243645]
We study unconstrained Online Linear Optimization with Lipschitz losses.
Motivated by the pursuit of instance optimality, we propose a new algorithm.
Central to these results is a continuous time approach to online learning.
arXiv Detail & Related papers (2023-09-27T21:54:52Z) - Efficient Methods for Non-stationary Online Learning [67.3300478545554]
We present efficient methods for optimizing dynamic regret and adaptive regret, which reduce the number of projections per round from $mathcalO(log T)$ to $1$.
Our technique hinges on the reduction mechanism developed in parameter-free online learning and requires non-trivial twists on non-stationary online methods.
arXiv Detail & Related papers (2023-09-16T07:30:12Z) - Universal Online Learning with Gradient Variations: A Multi-layer Online Ensemble Approach [57.92727189589498]
We propose an online convex optimization approach with two different levels of adaptivity.
We obtain $mathcalO(log V_T)$, $mathcalO(d log V_T)$ and $hatmathcalO(sqrtV_T)$ regret bounds for strongly convex, exp-concave and convex loss functions.
arXiv Detail & Related papers (2023-07-17T09:55:35Z) - Smoothed Online Convex Optimization Based on Discounted-Normal-Predictor [68.17855675511602]
We investigate an online prediction strategy named as Discounted-Normal-Predictor (Kapralov and Panigrahy, 2010) for smoothed online convex optimization (SOCO)
We show that the proposed algorithm can minimize the adaptive regret with switching cost in every interval.
arXiv Detail & Related papers (2022-05-02T08:48:22Z) - Universal Online Convex Optimization Meets Second-order Bounds [74.0120666722487]
We propose a simple strategy for universal online convex optimization.
The key idea is to construct a set of experts to process the original online functions, and deploy a meta-algorithm over the linearized losses.
In this way, we can plug in off-the-shelf online solvers as black-box experts to deliver problem-dependent regret bounds.
arXiv Detail & Related papers (2021-05-08T11:43:49Z) - Dynamic Regret of Convex and Smooth Functions [93.71361250701075]
We investigate online convex optimization in non-stationary environments.
We choose the dynamic regret as the performance measure.
We show that it is possible to further enhance the dynamic regret by exploiting the smoothness condition.
arXiv Detail & Related papers (2020-07-07T14:10:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.