Learning to Automatically Diagnose Multiple Diseases in Pediatric Chest
Radiographs Using Deep Convolutional Neural Networks
- URL: http://arxiv.org/abs/2108.06486v1
- Date: Sat, 14 Aug 2021 08:14:52 GMT
- Title: Learning to Automatically Diagnose Multiple Diseases in Pediatric Chest
Radiographs Using Deep Convolutional Neural Networks
- Authors: Thanh T. Tran, Hieu H. Pham, Thang V. Nguyen, Tung T. Le, Hieu T.
Nguyen, Ha Q. Nguyen
- Abstract summary: Deep convolutional neural networks (D-CNNs) have shown remarkable performance in interpreting chest radiograph (CXR) scans in adults.
In this paper, we retrospectively collect a large dataset of 5,017 pediatric CXR scans, for which each is manually labeled by an experienced radiologist.
A D-CNN model is then trained on 3,550 annotated scans to classify multiple pediatric lung pathologies automatically.
- Score: 0.4697611383288171
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Chest radiograph (CXR) interpretation in pediatric patients is error-prone
and requires a high level of understanding of radiologic expertise. Recently,
deep convolutional neural networks (D-CNNs) have shown remarkable performance
in interpreting CXR in adults. However, there is a lack of evidence indicating
that D-CNNs can recognize accurately multiple lung pathologies from pediatric
CXR scans. In particular, the development of diagnostic models for the
detection of pediatric chest diseases faces significant challenges such as (i)
lack of physician-annotated datasets and (ii) class imbalance problems. In this
paper, we retrospectively collect a large dataset of 5,017 pediatric CXR scans,
for which each is manually labeled by an experienced radiologist for the
presence of 10 common pathologies. A D-CNN model is then trained on 3,550
annotated scans to classify multiple pediatric lung pathologies automatically.
To address the high-class imbalance issue, we propose to modify and apply
"Distribution-Balanced loss" for training D-CNNs which reshapes the standard
Binary-Cross Entropy loss (BCE) to efficiently learn harder samples by
down-weighting the loss assigned to the majority classes. On an independent
test set of 777 studies, the proposed approach yields an area under the
receiver operating characteristic (AUC) of 0.709 (95% CI, 0.690-0.729). The
sensitivity, specificity, and F1-score at the cutoff value are 0.722
(0.694-0.750), 0.579 (0.563-0.595), and 0.389 (0.373-0.405), respectively.
These results significantly outperform previous state-of-the-art methods on
most of the target diseases. Moreover, our ablation studies validate the
effectiveness of the proposed loss function compared to other standard losses,
e.g., BCE and Focal Loss, for this learning task. Overall, we demonstrate the
potential of D-CNNs in interpreting pediatric CXRs.
Related papers
- Improving Fairness of Automated Chest X-ray Diagnosis by Contrastive
Learning [19.948079693716075]
Our proposed AI model utilizes supervised contrastive learning to minimize bias in CXR diagnosis.
We evaluated the methods on two datasets: the Medical Imaging and Data Resource Center (MIDRC) dataset with 77,887 CXR images and the NIH Chest X-ray dataset with 112,120 CXR images.
arXiv Detail & Related papers (2024-01-25T20:03:57Z) - Advancing Diagnostic Precision: Leveraging Machine Learning Techniques
for Accurate Detection of Covid-19, Pneumonia, and Tuberculosis in Chest
X-Ray Images [0.0]
Lung diseases such as COVID-19, tuberculosis (TB), and pneumonia continue to be serious global health concerns.
Paramedics and scientists are working intensively to create a reliable and precise approach for early-stage COVID-19 diagnosis.
arXiv Detail & Related papers (2023-10-09T18:38:49Z) - Attention-based Saliency Maps Improve Interpretability of Pneumothorax
Classification [52.77024349608834]
To investigate chest radiograph (CXR) classification performance of vision transformers (ViT) and interpretability of attention-based saliency.
ViTs were fine-tuned for lung disease classification using four public data sets: CheXpert, Chest X-Ray 14, MIMIC CXR, and VinBigData.
ViTs had comparable CXR classification AUCs compared with state-of-the-art CNNs.
arXiv Detail & Related papers (2023-03-03T12:05:41Z) - CovidExpert: A Triplet Siamese Neural Network framework for the
detection of COVID-19 [0.0]
We develop a few-shot learning model for early detection of COVID-19 to reduce the post-effect of this dangerous disease.
The proposed architecture combines few-shot learning with an ensemble of pre-trained convolutional neural networks.
The suggested model achieved an overall accuracy of 98.719%, a specificity of 99.36%, a sensitivity of 98.72%, and a ROC score of 99.9% with only 200 CT scans per category for training data.
arXiv Detail & Related papers (2023-02-17T17:18:02Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - Learning to diagnose common thorax diseases on chest radiographs from
radiology reports in Vietnamese [0.33598755777055367]
We propose a data collecting and annotation pipeline that extracts information from Vietnamese radiology reports to provide accurate labels for chest X-ray (CXR) images.
This can benefit Vietnamese radiologists and clinicians by annotating data that closely match their endemic diagnosis categories which may vary from country to country.
arXiv Detail & Related papers (2022-09-11T06:06:03Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
The novel coronavirus (SARS-CoV-2) has led to a pandemic.
The current testing regime based on Reverse Transcription-Polymerase Chain Reaction for SARS-CoV-2 has been unable to keep up with testing demands.
We propose a framework called CovidDeep that combines efficient DNNs with commercially available WMSs for pervasive testing of the virus.
arXiv Detail & Related papers (2020-07-20T21:47:28Z) - COVID-Net S: Towards computer-aided severity assessment via training and
validation of deep neural networks for geographic extent and opacity extent
scoring of chest X-rays for SARS-CoV-2 lung disease severity [58.23203766439791]
Chest x-rays (CXRs) are often used to assess SARS-CoV-2 severity.
In this study, we assess the feasibility of computer-aided scoring of CXRs of SARS-CoV-2 lung disease severity using a deep learning system.
arXiv Detail & Related papers (2020-05-26T16:33:52Z) - Interpreting Chest X-rays via CNNs that Exploit Hierarchical Disease
Dependencies and Uncertainty Labels [0.33598755777055367]
We present a framework based on deep convolutional neural networks (CNNs) for diagnos-ing the presence of 14 common thoracic diseases and observations.
The proposed method was also evaluated on an inde-pendent test set of the CheXpert competition, containing 500 CXR studies annotated by apanel of 5 experienced radiologists.
arXiv Detail & Related papers (2020-05-25T11:07:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.